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Abstract:

A brief review of the history of the experimental search for the neutron electric-dipole moment (EDM) is presented, followed by
a discussion of the “state of the art” experimental techniques based on the storage of ultracold neutrons. Also discussed is the recent
work on the construction of an improved experiment incorporating a !°°Hg magnetometer within the ultracold neutron storage volume.

We then review a number of well-known experimental and theoretical results and propose an entirely new experimental technique to
search for the neutron EDM based on storing together, in superfluid “He, polarized ultracold neutrons and a polarized gas of 3He
atoms; this forms a unique system of two spins interacting by means of a spin-dependent mutual absorption. Such a system appears to be
ideally suited for use in a neutron EDM search. Following a brief description of the method, we present an analysis of the dynamics of
such a system and calculate the statistical uncertainties to be expected in an EDM search. We show that, in principle, improvement by
a factor of over 1000 in the experimental limit is possible. This limit would be more than sufficient to determine whether the known CP
violation leads to the observed cosmological baryon asymmetry and, in addition, would set very strict limits on the supersymmetric,
multi-Higgs, and left-right-symmetric models of CP violation. We conclude with a discussion of some technical questions related to the
proposed experimental technique.



1. Introduction

The electric-dipole moment (EDM) of the neutron has been interesting to physicists since 1950
[Purcell and Ramsey 1950]. Today some 45 years later this interest is significantly stronger
although, in all this time, nobody has been able to observe an EDM of the neutron or any other
elementary particle. The reason for this lies in the fact that the existence of an EDM for an
elementary particle would be direct evidence for the violation of time-reversal symmetry (T
violation) as well as parity (P violation). For many years it was accepted as canon that the laws of
physics would have to be symmetric under P and. T transformations, as the contradiction of this
requirement implied that empty space would possess properties such as a preferred direction, and
that physical results would not be independent of the coordinate system we choose to describe
them. In this paper we present a review of the historical development and the current “state of the
art” concerning the neutron EDM. We then go on to describe how a system of polarized
Ultra-Cold Neutron (UCN) gas and a polarized gas of *He atoms, a unique system of two spins
interacting by means of a mutual absorption, is ideally suited for a neutron EDM search. We
present an estimate of the accuracy to be expected from such an experiment and conclude with
a short discussion of some technical questions.

1.1. Historical background

1.1.1. The Dirac magnetic monopole

For many years all known experimental evidence from atomic and nuclear physics was in
agreement with the postulate that the laws of physics are invariant under the P and 7 symmetry
operations. It was Dirac [1949] who first questioned this tenet in print. As early as 1949 he wrote,
“I do not believe there is any need for physical laws to be invariant under reflections in space and
time although the exact laws of nature so far known do have this invariance.” Dirac was interested
in the possible existence of particles with free magnetic charge. This would make Maxwell’s
equations more symmetric regarding the interchange of electric and magnetic fields but would
violate the P and T symmetries. However, as Dirac [1948, 1949] showed, the existence of magnetic
charge would provide a natural explanation for the quantization of electric charge so that the
acceptance of P and T violation seemed a reasonable price to pay. Up to the present time all
attempts to observe the magnetic monopole have been unsuccessful [Goldhaber and Trower 1990].

1.1.2. The neutron electric-dipole moment (EDM)
The neutron ground state, having spin I = 1/2, is completely specified by the spin projection
quantum number m; = + 1/2. In external electric and magnetic fields E and B the Hamiltonian is

H=—(dI-E+ u,I-B)I, 1.1)

where d, and u, are the electric- and magnetic-dipole moments of the neutron [Golub and
Pendlebury 1972]. The electric-dipole moment must lie along I otherwise additional quantum
numbers would be necessary to describe the neutron ground state; in addition, any component
perpendicular to I would be unobservable. This Hamiltonian manifests P violation; under

4
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P,E— —E and B and I are unchanged; so that the possible existence of a nonzero EDM of an
elementary particle was long considered an absurdity by all-right thinking physicists. However in
1950, perhaps inspired by Dirac¢’s speculations, Purcell and Ramsey [1950] suggested that the
above arguments against the existence of a neutron EDM are not really compelling and the
question of P violation, like all questions in physics, must be addressed experimentally. Indeed, as is
now well known, the idea that any physically acceptable Hamiltonian must commute with the
parity operator subsequently had to be abandoned. The authors cited Dirac’s magnetic charge as
a possible physical mechanism that could lead to an EDM. They also argued that since matter in
our vicinity of the universe shows an enormous asymmetry with respect to the relative amounts of
matter and antimatter, we should accept the possibility of elementary particles appearing asymmet-
ric as a result of possessing a nonzero EDM. Thus the existence or not of an elementary-particle
EDM should be investigated experimentally, and such an investigation would also serve as an
experimental test of parity conservation. Emboldened by these arguments, they then proceeded to
search for a possible EDM of the neutron using a magnetic-resonance technique with a neutron
beam. This first experiment to search for a neutron EDM was set on a neutron beam at Oak Ridge
and produced the result (in 1951) d, = —(0.1 + 2.4) x 10~ 2° ecm [Smith 1951]. We can get an idea
of the attitude of the contemporary physics community to this work by the observation that it was
not published for a further six years [Smith et al. 1957].

1.1.3. The -0 puzzle and the discovery of parity violation

Lee and Yang [1956] suggested that parity nonconservation could explain the -0 puzzle; the
fact that two particles, called in those days t* and 0%, decayed into states with opposite parities in
spite of having the same masses, production rates and lifetimes. These latter observations were
strongly suggestive of the two particles being, in fact, different decay modes of one and the same
particle. Thus Lee and Yang were led to review the experimental evidence relating to the question
of parity conservation. At that time it was felt that the most sensitive test was the search for the
neutron EDM mentioned above [Smith 1951]. As we shall see shortly, this conclusion was not
justified because an EDM would violate time-reversal symmetry as well as parity. They (Lee and
Yang) suggested experiments to test for parity violation, most notably the measurement of the
angular distribution of B rays from a polarized nucleus. If parity were not conserved, there could be
electron emission of the form 4 =1I-p., where I is the nuclear spin and p, is the electron
momentum.

Landau [1957] commented on the unsatisfactory nature of a theory which requires space to be
asymmetric with respect to right and left. He suggested that the overall symmetry of space could be
preserved in the presence of P violation if the laws of physics were symmetric under the combined
operations of charge conjugation and parity performed together (CP symmetry). This was followed
rather quickly by the demonstration by Wu et al. [1957] of parity violation in the B-decay of ®°Co.
Interestingly, the asymmetry was so great that the parity-violating and parity-conserving parts of
the interaction needed to explain the results were equal in magnitude; the parity violation in the
weak interaction was found to be very large. Later experiments demonstrated that Landau’s
suggestion was correct and the symmetry obeyed by the weak interaction was indeed CP.

1.14. The EDM and time-reversal invariance

In the paper quoted above Landau [1957] also pointed out that one would not see an
EDM unless time reversal 7T is violated in addition to P. The Hamiltonian (1.1) manifests
T violation in addition to P violation; under 7, B— — B, I-» —1I and E is unchanged; however,
CPT is conserved.
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1

Fig. 1. Normal (left) and time-reversed (right) state of the ammonia molecule; the electric-field strength is great enough so that the Stark
effect is linear (the Stark effect energy is much greater than the inversion energy) [Golub and Pendlebury 1972].

Under time reversal, eq. (1.1) is altered; the time-reversed state is different from the original state
which implies time reversal is not a symmetry of the Hamiltonian. Why is it then that molecules
which have electric-dipole moments are not evidence of time-reversal violation? Figures 1a, b show
the normal and time-reversed states of an ammonia molecule. These two states are degenerate and
it is this degeneracy which allows the ammonia molecule to have an electric-dipole moment
without violating time reversal symmetry. (Actually this degeneracy is removed in ammonia by the
inversion splitting, so that the argument only applies in electric fields which are so large that the
inversion can be neglected. For smaller electric fields there is a second-order Stark effect.) However,
we assumed that the neutron ground state was completely described by the spin projection
quantum number m; and the spin states are nondegenerate. That the neutron ground state is
nondegenerate is also supported by the observed fact that neutrons obey the Pauli principle. One
can also understand the time-reversal violating character of eq. (1.1) through Kramer’s theorem
[Messiah 1966] which implies that for a Hamiltonian that depends on an external field which is
time-reversal invariant (an electric field, for example) times the angular momentum, the eigenvalues
of the system are at least twofold degenerate and the degeneracy is of even order. Since there are
only two eigenstates of the neutron, under application of an electric field, these states remain
degenerate. The degeneracy is removed by application of a magnetic field.

It had already been recognized that if a local Lagrangian theory is invariant under the proper
Lorentz transformation, then CPT (and its permutations) must be a symmetry of the theory (see,
e.g., Pauli [1955] and Luders [1957]). After it was recognized that 7 violation was necessary for the
existence of a neutron EDM, Ramsey [1958] argued that time-reversal symmetry was an open
question which could only be answered experimentally, i.e., that it was still important to search for
the neutron EDM. He again used a possible magnetic charge as a physical model.

1.1.5. Failure of CP invariance

In 1964 Christianson et al. [1964] reported the observation that CP was violated in the decay of
the K, meson, which implies a T violation as well. Arguments have been given (Casella 1969;
Schubert et al. 1970] that the K, experiments show T violation directly. This observation of CP
violation is the main motivation behind the on-going search for the neutron EDM, and searches for
EDMs in other systems, such as atoms [Lamoreaux et al. 1987; Lamoreaux 1989; Hunter 1991].

The origin of the CP violation, discovered in the decay of the K° system now 30 years ago,
remains an enigma [He et al. 1989; Shabilin 1983]. Historically, experimental upper limits on the
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value of a possible neutron EDM (and more recently atomic EDMs) have been used to place severe
restrictions on proposed explanations of this decay (see He et al. [1989] and Ellis [1989] for reviews
of the theory). :

The source of this CP violation remains unknown and experimental upper limits on the value of
a possible neutron EDM have been used to place severe restrictions on proposed explanations of
this decay. He et al. [1989], Ellis [1989], Barr and Marciano [1989] and Barr [ 1993] present recent
reviews of the theoretical situation while Ramsey [1982, 1978], Golub and Pendlebury [1972] list
some earlier reviews. For an example of how the neutron EDM can be estimated from the
experimentally observed CP violation in the K° system see He et al. [1988].

If the observed baryon—antibaryon constitution of the universe is due to the known CP violation
(along with a baryon nonconservation) one can expect a neutron EDM [Ellis et al. 1981]
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Fig. 2. The history of the experimental limit for the neutron EDM, along with some theoretical predictions. Since the observation of CP
violation in K, decay (1964) the experimental limit for the EDM has been reducing at a constant rate. The first UCN EDM experimental
results were reported in 1981-1982. The most recent limits, from the Petersburg Nuclear Physics Institute and from the Institut
Laue-Langevin, are at the level of 1072% ecm. For comparison, the sensitivity expected in the °?Hg comagnetometer experiment is
shown, along with that expected in our proposed *He-n comparison technique.
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6x107%% < d, < 2x 10723 cm (cosmology), while the “standard model” leads one to expect an
(unobservable) value of [Barr and Marciano 1989; Barr1993] 10733 < d, < 1073 cm.

In fig. 2 we show how the experimental precision of the search for a neutron EDM has improved
over the years. The most recent experimental values for the neutron EDM are those of Altarev et al.
[1992], d, = (2.6 + 4.0 + 1.6) x 10~ 26 ecm, which they interpret as an upper limit of |d,| < 11 x
1072 ecm, and Smith et al. [1990] (see also Pendlebury [1992]) d, = —(3 + 5)x 107 %% ecm,
which implies |d,| < 12 x 10726 ecm. Both of these experiments made use of bottled UCN.

It is fair to say that the neutron EDM has ruled out more theories (put forward to explain K,
decay) than any experiment in the history of physics. For example, in Ramsey [1982], roughly 24
out of 35 theoretical estimates are incompatible with the experimental results, while about 16 out of
the 17 listed in Golub and Pendlebury [1972] are incompatible. At present, there are 5 or 6 tenable
theories [Ellis 1989; He et al. 1989]; continued improvement in the neutron EDM limit will be
crucial in determining which of these are correct.

In a recent talk, Weinberg [1992] gave the following review of the current situation: “ ... endemic
in supersymmetry theories are CP violations that go beyond the [standard model], and for this
reason it may be that the next exciting thing to come along will be the discovery of a neutron or
electron electric-dipole moment. These electric-dipole moments were just briefly mentioned at this
conference, but they seem to me to offer one of the most exciting possibilities for progress in particle
physics. Experiments here, as in solar neutrino physics move very slowly, but I should mention that
there has been a lot of progress lately in calculating the electric-dipole moment of atoms in various
models, with results that are encouraging for future experiments.”

2. Current experimental technique
2.1. Ultracold neutrons (UCN)

It was Fermi who first realized that the coherent scattering of slow neutrons would result in an
index of refraction, or effective interaction potential V for slow neutrons travelling through matter,
and that this potential would be positive (index of refraction n < 1) for most materials. This
effective potential is crucial for many of the effects grouped together under the topic of neutron
optics. Sears [1989] provides a comprehensive discussion of this field.

Fermi also realized that the result of this was that those neutrons (with energy E) incident on
a surface at a glancing angle 6 which satisfied

Esin20 <V, sinf <sinf = (V/E)'/?, (2.1)

would be totally reflected just as light can be totally reflected on approaching a glass—air boundary
from the glass side. Fermi and Zinn [1946] and Fermi and Marshall [1947] performed the first
experimental demonstration of this effect. Total reflection of neutrons has provided the basis for
the highly successful technique of neutron guide tubes, in which neutrons whose angles satisfy (2.1)
can be transported large distances through guides whose surfaces are smooth enough so that
nonspecular reflections (reflections for which the angle of incidence is not equal to the angle of
reflection) are negligible, as first suggested by Maier, Leibnitz and Springer [1963]. The neutron-
guide technique has virtually transformed slow neutron scattering from a rather esoteric technique
to one of much wider applications.
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The observation of the total reflection of neutrons led to the speculation that if neutrons with
energies

ESV (2.2)

could be obtained —this is not obvious as typical materials have V' ~ 10”7 eV while thermal
neutrons have energies of 2.5 x 10”2eV — they would undergo total reflection at any angle of
incidence and hence could be stored in closed vessels. We refer to such neutrons as ultracold
neutrons (UCN). Golub et al. [1991], Ignatovich [1990] and Steyerl [1977] have presented reviews
of UCN research. While many workers in the field of neutron physics attribute the idea of neutron
storage to Fermi, the first person to take the idea seriously enough to put it into print was
Zeldovich [1959].

He pointed out that although the lifetime of a neutron in, e.g., graphite is only 10~ 2s (indepen-
dent of veloc1ty) because of the small penetration depth of a UCN during total reflection
(~10? A = 10~ %cm) the fraction of the time that stored UCN would actually spend in contact with
the walls is quite small (~ 10~7) and so one could expect an absorption time of ~ 10°s for stored
UCN. This is in good agreement with more detailed calculations. Zeldovich also estimated that
a thermal flux of 102ncm ™25~ ! cooled to 3K in liquid helium would produce a UCN density of
50cm 3. It is interesting to note that such densities have now been achieved at the Institut
Laue-Langevin, Grenoble using a reactor with a thermal flux of 10'*ncm ™25~ ! cooled to 20K in
a deuterium filled cold source. In 1968, Shapiro published a review article on the electric-dipole
moment of elementary particles. In this article he pointed out the advantages of UCN for the search
for a neutron EDM, especially the greatly increased observation time and the reduction of the v x E
effect (a magnetic field, produced in the frame of the moving neutron by the applied electric field,
interacting with the neutron’s magnetic moment and mimicking an EDM, as first suggested by
Sandars and Lipworth [1964]). See also Golub and Pendlebury [1972] for a more detailed
discussion of this point.

Given the fact that the energy V in (2.2) is some 10° times smaller than the thermal energy of
neutrons in the reactor moderator, and the Maxwellian energy spectrum for neutron flux is
proportional to E for low energies, it is remarkable that two groups, independently, had the
courage to invest the time and effort to construct the necessary installations on the chance that
neutrons so far from the peak of the Maxwell distribution did indeed exist inside the reactor, and
that they could be extracted without crippling losses of intensity. That both groups were successful
almost simultaneously is one of those coincidences which seem to be so common in the history of
physics.

The Dubna group under F.L. Shapiro [Luschikov et al. 1968, 1969] extracted UCN from a very
low-power pulsed reactor by means of a curved horizontal channel, 9.4 cm in diameter, 10.5 m long.
Counting rates of 0.8 counts/10%s (background ~ 0.4 counts/10%s) were obtained. Working at
Munich, Steyerl [1969] obtained UCN by vertical extraction from a steady-state reactor. The
beam was pulsed by a rotating chopper constructed out of 13 boron silicate glass plates located
deep within the reactor swimming pool 2 m above the core, allowing time-of-flight measurements
of the neutron spectra. The counting rate showed a steep drop below 10 m/s, probably due to
absorption in the aluminium windows, reflection losses and the limited acceptance angle of the
detector. However total cross sections were measured for neutron velocities down to 7 m/s for gold
and 5Sm/s for aluminium.

It is noteworthy that both these initial attempts were made at relatively low-intensity sources,
an average thermal flux of 1.6 x 10!°ncm ™25~ ! in the Dubna experiment and 10'*necm™2s ™! in
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the Munich experiment, thus demonstrating the ability to carry out really new and important
innovations at weak sources.

2.2. Neutron EDM measurements with stored UCN

The neutron EDM is measured by comparing the neutron Larmor frequency (measured, for
example, by use of Ramsey’s method of separated oscillatory fields [Ramsey 1956]) for parallel and
for antiparallel magnetic and electric fields. It follows from egn. (1.1) that the shift in Larmor
frequency between the two field configurations is dw, = —4d, E/h; the minus sign is necessary
because y, < 0.

Following the first experiments on UCN production Okun [1969] called attention to Shapiro’s
[1968] point that UCN offered a promising method for improving the sensitivity of the search for
a neutron EDM, emphasizing the potential improvement in observation times—103s for UCN
compared to 10”25 in a typical beam experiment.

Lushchikov et al. [1969] also suggested that UCN could be used to search for a neutron EDM. It
was immediately recognized that a storage experiment could give orders-of-magnitude higher
sensitivity than a beam experiment due to a longer interaction time, 10% s as opposed to 10~ 2s, and
that systematic effects due to nonparallel E and B fields would be greatly suppressed. Golub and
Pendlebury [1972] discuss fundamental limits to sensitivity for a variety of neutron EDM
experiments; use of bottled UCN is the clear winner. They further suggest, “if no effort were spared
a limit for the dipole length of 5 x 10727 ecm might ultimately be reached.” The present experi-
mental limits are not too far from this and this level is expected to be reached in the next round of
measurements. As we shall see later a factor of 1000 further improvement in sensitivity seems
possible.

An important advantage to the use of bottled UCN over beam experiments is the elimination of
the systematic effect due to the magnetic field generated by v x E; if E and B are not exactly parallel,

8B = (v/c)Esin0zp + /B* + [W/)ET? , 2.3)

where it is assumed that the velocity, v, is approximately perpendicular to E. E and B are roughly
parallel and 0z~ 0 is the angle between the magnetic and electric fields [Sandars and
Lipworth 1964]. In the case Oz # 0, there is a change in magnetic field associated with the
application of the electric field which generates a shift in Larmor frequency indistinguishable from
an EDM shift. In addition, even if the fields are parallel, there is a shift in magnitude proportional
to EZ; thus it is required that the magnitude of the electric field be reversed exactly in any case,
something which can be difficult in the presence of dielectrics. Since UCN stored in a bottle have an
average velocity of approximately zero, v x E effects are substantially reduced.

We will now derive the fundamental limits to a general class of bottled UCN experiments, which
include the neutron electric-dipole moment search, where a shift in energy between the two spin
states (a shift in Larmor precession frequency v) due to the application of an external field is
measured using magnetic-resonance techniques. The magnetic resonance linewidth, which deter-
mines the accuracy for which a shift can be measured, is given by

Avec T, 24
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where T is the time that the neutron spin was in a coherent superposition (precessing about the
field). This is a restatement of the uncertainty principle, that 8E 8T > 1 (energy measured in Hz).
Again, there is a finite neutron survival time 7 with the total number at time ¢ given by

N(t) = Noe™'* . 2.5)

The fluctuations in v between measurements due to counting statistics can be readily determined
(assuming that the total storage time is equal to 7, the coherence time),

8v oc (1/aT)NG V22 2.6)

where a represents the polarization efficiency. Assuming again that we do many (n), experiments
over a time t > T, we find, using n = t/7, that

o(v) oc Ng 12~ 1eT/2 /tT . 2.7

This has a minimum when T = 7. Thus, it is evident that we want a long survival time, « nearly one,
and N, to be large.

As was already mentioned, use of Ramsey’s method of separated oscillatory fields is a convenient
way to measure the magnetic-resonance frequency [Ramsey 1956]. In this method, we start with
the spin along a static magnetic field. An oscillating magnetic field nearly at the Larmor frequency
and perpendicular to the static field is turned on for a time 7’ such that the spin (as viewed in the
rotating frame) precesses through 90°, that is, a /2 pulse; the magnitude of the field 2b and 7’ satisfy
the relation ybt’ = ©/2, where 7y is the magnetic moment. After the oscillating (or RF) field is turned
off, the spin precesses about the static field for a time T > 7/, at which time a second pulse is applied;
note that the oscillator has been running in the background and has complete phase coherence as
defined by the first pulse. However, if the Larmor frequency and RF frequency are not exactly
equal, a phase difference builds up ¢ = (w0 — w¢) 7, where w is the RF frequency and wo = yB s the
Larmor frequency. Thus, in the rotating frame, the spin is not at right angles to the RF field and,
after a second 7/2 pulse, the spin will end up at an angle ¢ to the static field. The final polarization
is given by — Pycos ¢. As the RF is tuned off of resonance, the initial spin-flip probability is
reduced, thus the oscillations die away as shown in fig. 3.

An important advantage of bottled UCN over beam experiments is that the timing conditions
are the same for all neutrons. In a beam, faster neutrons spend less time, slower ones more time,
hence the Ramsey fringes get washed out. However, in the neutron bottle, if the RF field is
sufficiently homogeneous and if 7’ is longer than the mean collision time so that the RF field is
sufficiently averaged, all the neutrons see the same pulse length, and the same time between pulses,
thus the beautiful pattern shown in fig. 3. Since the time between pulses 7, is the same for all
neutrons, all the neutrons have cos ¢ = 0 at the same frequency and all the maxima in fig. 3 are the
same height (transition probability = 0).

When separated oscillatory fields are used, the determination of the effective linewidth is not so
obvious. If we use eq. V.37 given by Ramsey [1956] in the limit b > Aw where Aw = wy — @, and
b is the rf field strength, and if #/2 pulses are used (that is, the pulse length 7’ and the rf field strength
satisfy the condition t'yb/2 = n/4), we find that the probability to flip the neutron spin is

P~ —cosAw T, (2.8)
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Fig. 3. A neutron magnetic-resonance curve using the Institut Laue-Langevin EDM apparatus which employs Ramsey’s method of
separated oscillatory fields. The polarized UCN were stored for a total of 80s; the time between the 45 /2 pulses was 68 s, giving
a linewidth of 7mHz for the central fringe. Under normal operation of the apparatus, data is taken sequentially between the four points
shown; this provides a continuous calibration of the apparatus [Smith et al. 1990].

where T > 7’ is the time between pulses, which is the same result as our qualitative argument above.
If we use the same polarizer for both initial polarization and for analysis after the two pulses, and
take into account the polarizer inefficiency, we find that the number of neutrons which get through
the polarizer is

N(Aw) = No(1 —acosAw T)/2, a=(C; —C)/(C; +C3), Ci=N,, 2.9)
where « is the visibility as in fig. 3.

Since we will be looking for a small change in frequency with application of the electric field, we

want to sit on the side of the resonance where the sensitivity is highest, that is, where the slope in the

number of counts versus Aw is highest, and look for a change in counts with application of the
electric field,

ON(Aw)/0Aw = No2aTsinAw T . (2.10)
We need to minimize
o(Aw) = [0Aw/ON(Aw)] /Ny , (2.11)

since we count a total of Ny neutrons for both spin states. This has a minimum at Aw T = n/2 where
we find the frequency noise due to counting statistics

o(Aw) = 2/aT/N, , (2.12)

where N, is the number of counts for both spin states. Using our hamiltonian, eq. (1.1), and
ow = —2d_E/h, leads to

o(d,) = 1/2ET /N(Aw) . 2.13)
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2.3. Recent EDM experiments using UCN

2.3.1. Bottled UCN EDM experiment at the Institut Laue—Langevin

Figure 4 is a schematic of the experimental apparatus which is described more fully in Miranda
[1987] and Pendlebury et al. [1984]. The apparatus was initially used on the old ILL PN5 UCN
source and produced the result 0.3 + 4.8 x 107 25ecm [Pendlebury et al. 1984]. In 1986, the
experiment was moved to the ILL neutron turbine [Steyerl et al. 1986], where the UCN flux is two
orders of magnitude higher; the UCN density at the turbine output is 90 cm ™ 2. The new result of
this experiment is —(3 + 5)x 107 2%ecm [Smith et al. 1990]. A description of the experiment
follows.

The UCN are transported from the turbine to the experiment through a stainless steel guide. At
the apparatus, the UCN are polarized by transmission through a magnetically saturated 1 pm
thick iron—cobalt foil. The neutron bottle, consisting of two beryllium electrodes 0.25 m in diameter
separated by a 0.1 m long cylindrical beryllium oxide tube (0.01 m thick wall) which serves as an
insulator, has a net critical velocity 6.9 m/s. The BeO tube rests in grooves, about twice the tube
thickness deep, in the Be plates. This arrangement gives better high-voltage stability. The ideas and
technology behind the BeO—Be bottle are described by Golub [1986]. Neutrons enter the bottle
through a hole, which can be sealed with a beryllium door, in the grounded electrode.

The bottle is inside a five-layer Permalloy shield (shielding factor of 10°) [Sumner et al. 1987]
with the bottle axis perpendicular to the cylinder axis of the shield, the orientation being such that
the magnetic shielding is maximum. A 1 pT magnetic field B, parallel to the axis of the bottle, is
produced by a cylindrical coil with a constant number of turns per unit distance perpendicular to
the axis of the shield (cosine distribution), to produce a uniform field inside the magnetic shield.

The magnetic field between the polarizer and the storage bottle was carefully tailored so that the
adiabatic condition, w; = yB > |dB/dt|/B, where y is the gyromagnetic ratio, is satisfied, and so
that B # 0 everywhere; thus there is a gradual change from the approximately one kilogauss
polarizer field to shield, and through the shield to the bottle field of 10 mG; thus no loss of
polarization occurs.

Five layer mu-metal shield

Vacuum vessel High voltage

Guide changer

Magnet

UCN entrance l
r-1

L

= s 1 §

Polanizing Flip
foil coil

Neut
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detector 1m Rubidium
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Fig. 4. The neutron EDM measurement apparatus used at the Institut Laue-Langevin. The UCN are stored for a total of 80s; the static
magnetic field is 10mG and the applied electric field about 10kV/cm [Smith et al. 1990].
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The experiment is operated as follows. The five-liter storage volume is filled for 10 s (three filling
time constants), after which the door is closed. Immediately after filling, the density of polarized
UCN is about 10cm ™3, After waiting 6 s to allow the neutron velocities to become isotropic within
the bottle, the first pulse of a Ramsey separated (in time) oscillatory-field magnetic-resonance
sequence [Ramsey 1956] is applied for 4s. This turns the neutron spins perpendicular to the
magnetic field. The neutrons are allowed to precess for 70s (the neutron storage lifetime) after
which a second 4 s Ramsey pulse is applied. The neutron valve is opened and those neutrons in the
appropriate spin state pass through the polarizing foil which now serves as an analyzer, are
diverted to a detector, and are counted for 10s. The spin-flip coil, which consists of about 5 turns/cm
wound on a NiCu coated glass guide (so that the 3 kHz rf field can penetrate) 20 cm long, is then
turned on and adiabatically reverses the spin, thereby permitting the remaining neutrons to pass
through the polarizing foil and be counted, also for 10s. The two counting periods give approxim-
ately 12000 and 8000 neutrons. Including filling and emptying, each measurement cycle takes 124s.

An electric field, E, with magnitude up to 1.6 MV m™1, follows a 32-measurement cycle (about
one hour) sequence: eight cycles applied parallel to B, four cycles off, eight cycles antiparallel, and
four cycles off, with two cycles taken to change each state (the magnitude of E is constant over each
approximately three-day set of measurements). The direction of E is reversed by simply changing
the polarity of the voltage applied to the upper plate. The neutron bottle is maintained under
vacuum (10~ torr) or with 10~ *torr of nitrogen or helium to help quench sparking; it was found
that helium works much better. Leakage currents across the bottle are monitored and are kept
below 30nA by operating at an appropriate voltage. For most of the data presented here, the
leakage current was less than 5nA.

Over the course of a reactor cycle (about six weeks), the neutron-storage and high-voltage
properties of the bottle gradually deteriorate. This is probably due, in part, to hydrogen contaminat-
ing the surface [ Lanford and Golub 1977]. The background system vacuum is rather poor, of order
10~ ® torr. Running a discharge of Ar and D, in situ (about 150V, 50 Hz for 10 min at 1-5Torr)
restores the storage time [Mampe et al. 19817 and low-leakage currents. Such discharge cleaning is
repeated approximately once every reactor cycle. There is some evidence that the presence of high
voltage accelerates the degradation.

The magnetic field within the shield is monitored using three optically pumped rubidium
magnetometers placed around the neutron bottle [Pendlebury et al. 1984] at a maximum distance
of 40 cm from the bottle. The field at each magnetometer is averaged over the neutron-storage time.
In addition, there is a flux gate magnetometer placed between the outer two layers of the shield to
check for possible externally generated systematic signals.

Between measurements, the frequency of the rf field for Ramsey pulses is changed so that there
can be a continuous calibration of the apparatus; the frequency is varied sequentially through four
points around the central fringe of the resonance pattern (see fig. 3). The two points on each side of
the resonance center are separated by one tenth of a linewidth. The four points are used to
determine both the neutron-spin polarization and the resonance frequency. To determine the
neutron resonance frequency, v,, a first pass is made through the data to extract the visibility of the
resonance curve, o = (C; — C,)/(C, + C,), which is typically 0.64 (see fig. 3). A second pass uses
o and a combination of the counts for the two neutron-spin states to yield a single resonance
frequency v, for each measurement cycle, as implied by eq. (2.9). An important advantage of this
technique is that it suppresses nonstatistical fluctuations in the neutron flux (due to reactor-power
fluctuations, for example), since one works with the ratio of spin-up to spin-down counts. Over the
course of the measurements, the frequency is changed so that the resonance is tracked as the
magnetic field drifts.
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A run lasts about three days and has about 1000 measurements of the resonance frequency. The
electric field is reversed about every ten measurements as described above.

An EDM would appear simply as a shift in resonance frequency with application of an electric
field. The problem is to extract the EDM frequency shift from other systematic effects due to
sparks, leakage currents, or externally generated fields associated with switching the high voltage.

A number of techniques have been used to extract the neutron frequency shifts which change sign
with the applied electric-field direction, Av, = 4[v,(E) — v,(—E)]. Generally, a drifting back-
ground is removed by fitting terms linear and quadratic in time for the individual measurement
sets. Cycles around obvious discrete jumps in the magnetic field are discarded. Similar analyses are
performed for the three magnetometers yielding Av,,;, Avy,, and Av,,;. Frequency shifts quadratic
in E (voltage-on—voltage-off effects) and shifts between the zero electric-field groups (due for
example to the shields being magnetized by leakage currents or sparks) are also extracted. To help
identify systematic effects, the direction of the fixed magnetic field is reversed every few weeks;
a true EDM frequency would have its sign reversed by this. In addition, the high voltage was varied
between measurement sets; a true EDM would scale with the electric-field strength.

The magnetometer readings have been used to correct for systematic errors in two independent
ways. The conclusion is that the best result for the neutron EDM comes from the average of the
results of the two different analyses, with the larger of the two error bars,

d,=(—33+43)x10"2%ecm, |d,| < 12x1072%ecm90% C.L.

The contribution to the above error from neutron counting statistics, using eq. (2.13), is
1.9x1072%¢cm.

The present experiment is limited by how well the magnetic field within the neutron bottle is
monitored by the spatially separated rubidium magnetometers. In section 2.3.3 we will describe
a new experiment which is being built from the components of this experiment, incorporating
a comagnetometer (a polarized atomic species within the neutron-storage volume); this should give
an improvement of a net factor of ten.

2.3.2. Bottled UCN EDM experiment at the VVR-M reactor, Leningrad

Altarev et al. [1992] have recently reported the result d, = (2.6 + 4.0 + 1.6) x 10”26 ecm, which
they interpret as an upper limit of d, < 1.1 x 10725 ¢ cm. This should be compared with their earlier
result [Altarev et al. 1986] d, = —14 + 6 x 10”25 ecm. The major improvements for this experi-
ment were in the UCN source and an increased neutron-storage time.

A schematic of the experimental apparatus is shown in fig. 5. In many ways the apparatus is
similar to that of the ILL experiment, however, there are important differences. As can be seen in
fig. 5, there are two neutron-storage chambers with oppositely directed electric fields (relative to the
magnetic field) in each chamber. The high voltage is applied to the plate separating the two
chambers while the outer plates are held at ground potential. They typically run at 15kV/cm,
somewhat higher than the average of the ILL experiment.

Using two bottles with oppositely directed electric fields essentially doubles the sensitivity to
a neutron EDM while reducing background magnetic-field noise; an EDM-generated shift will be
of opposite sign for the two chambers. In addition, since the two chambers are located quite close
spatially, one would expect high discrimination from background magnetic-field changes since the
EDM shift is given by the difference in the resonance frequency between the chambers as a function
of electric-field direction; this difference is sensitive only to changes in spatial gradients of the
magnetic field. Such gradients could be due to locally generated fields such as leakage currents
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Fig. 5. The neutron EDM measurement apparatus used at the Petersburg Nuclear Physics Institute, Gatchina, Russia. 1. magnetic
shields, 2. vacuum chamber, 3. Helmoltz coils for producing the static magnetic field, 4. UCN polarizer, 5. ground electrode,
6. high-voltage electrode, 7. entrance shutter, 8. exit shutter, 9. spin analyzers, 10. spin flipper, 11. cesium magnetometers, 12. frequency
divider, 13. control for oscillating-field pulses, 14. coils for producing oscillating field, 15. cesium magnetometer. D labels the UCN
detectors with B and H specifying upper and lower chambers, 1 and 2 specifies the two polarizations. Two quartz insulating rings
together with the three electrodes comprise the two storage volumes of 201 each [Altarev et al. 1986].

within the bottle. However, even for local fields, the close placement of the chambers should give
a fairly good cancellation of the net magnetic-field change.

The position of the resonance is stabilized by synthesizing the radiofrequency pulses for
the neutrons from the output of two cesium magnetic Zeeman atomic oscillators (located
near the storage chambers). (The ratio of neutron resonance frequency to cesium is about 120.)
This was necessary in part because the three-layer Permalloy shield did not provide
adequate stability and shielding. The stabilization improved the effective shielding by a factor of
about 15.

The chamber walls are quartz rings onto which films of BeO and Be;N, have been deposited.
Leakage currents average 30 nA at the approximately 15kV/cm used. There is a system of shutters
to the entrance and exit guides through which the chambers can be filled and emptied. A system of
four detectors, each with its own polarizer and two with adiabatic spin flippers allow counting the
spin-up and spin-down neutrons for each chamber simultaneously, as opposed to the ILL
experiment where the spin-up and spin-down are counted in sequence.

The experiment originally operated in a “flow-through” mode; that is, the neutron shutters were
kept continually open and neutrons were continuously counted; a shift between spin-up and
spin-down counting rate as a function of electric-field direction would be an indication of an EDM.
However the majority of the data leading to the published results was obtained using a pulsed
technique similar to that used in the ILL experiment, making full use of the chamber lifetime of 50's
as implied by egs. (2.7) and (2.13). The increase in sensitivity gained here along with the improved
source of UCN results in a daily statistical uncertainty of about 2.5 x 10~ 2% e cm, comparable to the
ILL experiment.

The data reported in Altarev et al. [1986] seemed to have some systematic contamination. In
Altarev et al. [1992] the authors attributed a large part of the discrepancy between their newest
result and that of 1986 (see above) to the result of a single run. After discarding this run the 1986
result is more or less in agreement with the later one.
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2.3.3. UCN EDM experiment with a 1°° Hg comagnetometer

Since the ILL experiment described in section 2.3.1 was no longer limited by counting statistics
but by systematics, it was decided to rebuild the apparatus and include a comagnetometer, that is,
a polarized atomic species within the same storage volume as the neutrons, and thus provide
a nearly exact spatial and temporal average of the magnetic field as seen by the neutrons over the
storage period. The use of polarized *He had already been considered [Ramsey 1984], but the
extreme difficulty in the detection of the *He polarization makes its use impractical.

The use of 1°°Hg has been suggested [Lamoreaux 1986] and a magnetometer suitable for the
EDM experiment has been constructed and tested [Pendlebury 1992]. The advantage here is that
199Hg can be readily directly optically pumped and its polarization optically detected with 254 nm
resonance radiation [Lamoreaux 1989]. Since !°°Hg is a 1S, atom, its ground-state polarization is
specified by the nuclear angular momentum, which is 1/2 for 1*°Hg.

An important feature of a spin-1/2 system is that its Larmor frequency cannot be affected by
electric fields other than through an EDM. This is a statement of Kramer’s theorem, already
mentioned above, that the energy levels of a 7-even hamiltonian are doubly degenerate
[Messiah 1966]. Since there are only two levels which describe the ground state, these levels are
degenerate and there is no observable effect. This is to be compared to higher-spin species which
were earlier considered, such as alkali atoms (cesium and rubidium). In these cases, the total spin is
greater than 1 and the atoms have a large electric polarizability; the ground-state Zeeman levels
split proportional to E2. Such shifts would make exact reversal of the electric field imperative, an
experimental difficulty in the presence of dielectrics.

Furthermore, it is necessary that the atomic species does not have an EDM of its own which
could possibly mask a neutron EDM; in the case of *°Hg, experimental limits have already been
set at the level of sensitivity needed [Lamoreaux et al. 1987, Lamoreaux 1989]. In these experi-
ments, ground-state spin-polarization lifetimes in excess of 100 s were routinely achieved in cells of
about 5cm? volume, even in the presence of electric fields up to 15kV/cm. However, these cells
included 250 torr of nitrogen to improve the high-voltage stability.

An unfortunate disadvantage of °°Hg is that the walls of the container must be specially
prepared to have long spin-relaxation times. In all previous experiments, hydrocarbon waxes were
used; these of course would be unusable with UCN. In addition, the wall coating has to be stable
under the application of high voltage in vacuum since a high-pressure background gas cannot be
used with the UCN.

A possible wall coating material, deuterated polystyrene (DPS), has been developed
[Lamoreaux 1988] and is presently in use [Pendlebury 1992]. Although the Hg spin polarization
characteristics are not as good as the hydrocarbon waxes, (10 s/cm mean free path versus 100s/cm
mean free path), it should give a lifetime of about 100s in the much larger neutron bottle. In
addition, thin films of DPS seem to be stable under electric fields in vacuum. The vacuum stability
is a bit puzzling as every other thin-film (suitable for use with UCN) material tested would break
down at relatively low electric fields. These materials included fomblin and teflon where electric
fields of about 2kV/cm would cause breakdown. It has long been known that polystyrene can be
formed from an electrical discharge in styrene vapor; perhaps there is some complicated dynamical
chemistry which leads to the high-voltage stability. In addition, it has been shown that
for a material to have high-vacuum-voltage stability, its vapor pressure must increase slowly
with temperature [Trump and Van de Graaff1947]. The vapor pressure of fomblin certainly
rises rapidly with temperature, hence its usefulness as a diffusion pump fluid. Teflon breaks down
readily upon heating; the breakdown temperature of polystyrene seems to be higher than that
of teflon.
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DPS also has excellent UCN storage properties. Preliminary tests show that it is about as good
as fomblin and as easy to apply to a surface. The Fermi potential of DPS is about 165 neV, higher
than that of fomblin. In addition, thin films of DPS are stable in vacuum even under application of
electric fields. It should be pointed out here that teflon has good polarized Hg storage properties
and the surface can be adequately prepared for arbitrarily large bottles; its only drawbacks are its
instability in high voltage, although this problem might be solved, and its somewhat lower Fermi
potential.

Spin relaxation times for !°°Hg of 155 in a 22 ¢ bottle coated with DPS have been reported
[Pendlebury 1992]. It has since been discovered that atomic hydrogen on the surface severely
impairs the lifetime (for both teflon and DPS) and that a weak discharge in approximately
0.1-1 Torr oxygen cleans the surface and gives a good lifetime of 70-80s, in good agreement with
the expected 100 s, which remains stable under clean vacuum conditions [Lamoreaux 1992].

A schematic of the experimental apparatus is shown in fig. 6. To increase the sensitivity through
storage time and neutron counts, and to account for the loss of neutrons due to the lower Fermi
potential of DPS over Be-BeO, a larger (about ten times) volume storage bottle has been
constructed. Since there is a considerable shift in the center of mass between the UCN gas and
atomic gas in the gravitational field (due to the difference in temperature) [Ramsey 1984], the
experiment is designed so that the shorter axis of the bottle is vertical, thus minimizing the
displacement. It is necessary to have a gas-tight window which can withstand atmospheric
pressure. It has been decided that this will be the polarizer; the polarizer is constructed by
evaporating iron onto aluminum. To account for the fairly high Fermi potential of the aluminum,
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Fig. 6. The modified ILL EDM apparatus which now includes a !°*Hg comagnetometer. The chosen height of the apparatus maximizes
the UCN density after a 120 s storage period. The Hg spin orientation is detected by a beam of circularly polarized resonance radiation
propagating across the storage volume [Pendlebury 1992].



R. Golub and S.K. Lamoreaux, Neutron electric-dipole moment, ultracold neutrons and polarized 3He 19

after passing through the foil the UCN will rise about one meter. Tests have been conducted to
determine the optimum combination of heights to maximize the number of UCN left in a test bottle
after a 100 s storage period.

The neutron-storage bottle is an aluminum oxide cylindrical spacer about 60 cm in diameter and
20cm high separating the aluminum plates. The entire inner surface has been coated with DPS.
The neutron valve is gas-tight to minimize the loss of the polarized atomic vapor.

Provisions are included for polarizing the atomic vapor. There is an optical pumping cell
connected to an isotopically enriched Hg reservoir. The Hg is optically pumped to the appropriate
spin state, parallel to the static field, with circularly polarized light from a Hg discharge lamp. After
the Hg is polarized, and after the neutron bottle is filled with polarized UCN and the neutron valve
closed, the polarized Hg is admitted to the neutron bottle. #/2 pulses are applied for both the
neutrons and Hg (the !°°Hg magnetic moment is about one third of the neutron magnetic
moment). The free precession of the Hg spin is observed with a beam of circularly polarized
resonance light which propagates across the bottle diameter, through quartz windows in the
insulating cylinder. The average magnetic field over the storage time can be determined from the
free precession signal.

At the end of the storage period, the second neutron pulse is applied, the bottle door opened, and
the neutrons are counted as usual. The Hg is pumped away. While the storage was in progress,
more Hg had been admitted to the optical pumping cell and polarized; the process is thus ready to
be repeated.

An EDM will be evident from a change in the ratio of the magnetic moments between reversals
of the electric field. Although the sensitivity of the Hg to the magnetic field is only 1/3 that of the
neutron, the high signal-to-noise inherent in the free precession signal is a compensating factor; in
fact, preliminary estimates show that determination of the average field should be a factor of 10
higher in sensitivity than the neutron signal and hence contribute very little noise.

3. Superfluid He neutron EDM with *He comagnetometer
3.1. Introduction

Golub [1983,1987] has suggested performing an EDM search directly in the liquid helium of
a superthermal source [Golub et al. 1983; Kilvington et al. 1987] using a dilute solution of
polarized *He as a polarizer and detector since *He absorbs neutrons only when the total spin is
zero (neutron and *He spins antiparallel). The polarization and transport of polarized *He is a well-
developed technology [Aminoff et al. 1989]. The reaction between 3He and neutrons should
produce ultraviolet scintillation in the liquid helium which should be easily detectable, giving
a detection of *He—n reactions with nearly 100% efficiency. In addition, liquid He has good
dielectric characteristics and it should be possible to establish modest electric fields without
breakdown.

Such an experiment would be sensitive to a neutron EDM by looking at the scintillation rate at
the end of a double-pulse sequence as a function of electric field. It has been shown, by solving the
Schrédinger equation in the presence of a spin-dependent absorption probability, that this
technique is slightly less sensitive than the conventional bottle technique; however, this loss of
sensitivity is more than made up for by elimination of the extraction losses, transport losses,
polarization transmission losses, etc. In fact, extremely high UCN densities might ultimately be
achieved by locating the helium as close as possible to the reactor core. In addition, the presence of
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liquid helium suggests the use of superconducting shields which might be better than the usual
Permalloy.

Unfortunately, the problem of measuring the magnetic field remains and it has been demonstrated
that experiments are presently limited by magnetic systematic effects. It might be possible to use
SQUID magnetometers to detect the >He magnetization, the 3He could then serve as a mag-
netometer. However, the sensitivity is at best marginal. Lamoreaux and Golub [1989] have sug-
gested using the *He as a direct comagnetometer by using “dressed atom” techniques to make the
magnetic moments of the neutron and 3He equal. In this section we will describe the method using
a classical model. In section 4 we give a quantum-mechanical discussion of the dressed spin system
while section 5 gives a quantum-mechanical discussion of the evolution of the system under the
influence of modulated dressing and feedback from the EDM signal to the dressing parameters. In
section 6 we present an analysis of the expected accuracy of the method while section 7 discusses
some relevant technical questions.

The main idea is to make use of the production of UCN by the downscattering of 8.9 A neutrons
in superfluid “He. If the *He contains a very small concentration of polarized *He, the UCN will be
polarized due to the strong spin dependence of the *He absorption cross section. Since the He will
be exposed to the same magnetic field as the UCN, the precession of the 3He can be used as
a comagnetometer, measuring the volume and time average of the magnetic field as seen by the
UCN [Golub 1983]. In fact, as we show below, the effects of the static magnetic field can be
completely eliminated by the “critical dressing” technique [Golub et al. 1991; Lamoreaux and
Golub 1991]. Because of the spin dependence of the He absorption cross section, the UCN
absorption rate will depend on the angle between the *He and the UCN spins. By detecting the
scintillations produced in the “He due to the energetic triton and proton released following UCN
capture by 3He, the 3He can be made to serve as polarization analyzer and UCN detector.

A reasonable goal is to gain a factor of 1-5 x 10? in EDM sensitivity over that anticipated in the
Hg comagnetometer experiment. This could be from a factor of 3-5 increase in electric field which
should be allowed by the rather good insulating properties of liquid helium, a factor of 100 in
statistics due to a factor 10* increase in the total number of UCN (from an increase in UCN density
and a larger storage-chamber volume), and an increased storage lifetime, from 80s in the present
experiments to 500s.

3.2. Production of UCN in superfluid *He

Neutrons at (or near) rest in a bath of superfluid *He can only absorb a “He excitation whose
energy and momentum E_ k. lic at the intersection of the well known “He phonon-roton
dispersion curve and the “free-neutron dispersion curve” [Golub et al. 1983],

w = hg*/2m, . (3.1

This process is strongly suppressed by the Boltzmann factor, exp(— E./T), where E; = 11 K. By the
same argument only neutrons with energies at (or near) E, can scatter into the UCN energy region
by emission of a single excitation. The UCN produced in this way will remain in the helium until
they are lost through one of the possible loss mechanisms (B decay, absorption by *He, wall losses,
upscattering). The UCN will reach a saturation density

puen = Pt (3.2)
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where P is the production rate (cm ~3s~ ') due to the above-mentioned downscattering, and 7 is the
storage lifetime due to all loss mechanisms [Kilvington et al. 1987].

As the UCN are produced independently of the direction of the incoming neutrons it is possible
to increase P and hence pycy by increasing the solid angle of the incoming neutron beam.

Since the present experiment has a density of 3-4 UCN/cm?, to achieve a 10* increase in density
requires a production rate of 60 UCN/cm?s (assuming a storage lifetime 7 ~ 500s) which can be
compared to the production rate of 2/cm3s obtained in the present superthermal source experi-
ments carried out at the end of a neutron guide [Kilvington et al. 1987].

3.3. Polarization of UCN

The fraction of the total neutron absorption by *He which takes place from the J = 0 state was
measured to be [Passell and Schermer 1960]

Gy-0/0u = 1.01 + 0.03 (3.3)

so that we can assume that there is no absorption for the neutron spin s, parallel to the *He spin s3
(J=1), ‘

o, =0, o_=20,, 0o=355%x10%b, (34

where g, is the 3He absorption cross section as usually measured (v, = 2200m/s and both the
neutrons and *He unpolarized) and + indicate the relative directions of the UCN and *He spins
(+ for parallel). The storage lifetime of the two different spin states is then

l/t+ = 1/twpg + (1 FP3)(N3000,), (3.5)

where Twg is the effect of wall losses and B decay and P;, N; are the 3He polarization and number

density, while v, represents the neutron velocity at which g, is measured. Due to the 1/v

dependence of absorption cross section (note that it is the UCN velocity relative to the center of

mass of the 3He gas which is important here) o4, is a constant independent of neutron velocity.
Thus the saturation UCN densities for the two spin directions are

pr =3Pty , (3.6)
leading to
Pyen = P3 /(1 + tue/Twp) (3.7

for the UCN polarization, where 1/t4. = N3o,v,. The absorption rate of UCN by 3He or the rate
of production of scintillations is then proportional to

1/Tabs = (1/tue)(1 — Pyen* Ps) - (3.8)

For the relaxation to be dominated by the *He (so Ty, = 13/10), N3 ~ 10'3/cm? is required. This
implies, for an anticipated 30 ¢ storage vessel with a 1000 s measurement period, and a fill time of
500s (total polarized 3He collection time of 1500s), a polarized 3He production rate of
2 x 10**atoms/s if the 3He is renewed after each measurement cycle.
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3.4. Polarization of *He

The idea of using the strong spin dependence of neutron absorption by *He to polarize neutrons
has been around for some time [Passell and Schermer 1960]. The problem is to produce a high *He
polarization at a sufficiently high density and is discussed in detail in Coulter et al. [1987] in regard
to application to relatively high-energy (1eV) neutrons. There are several methods of producing
polarized *He presently available.

Cryogenic methods, involving the melting of polarized solid *He produced at mK temperatures
(see Vermeulen and Frossati [1987] and references therein). These techniques seem too specialized
for the average neutron laboratory.

Two optical pumping methods which have been under active development for several years. The
first consists of directly pumping a gas of metastable *He atoms (produced by an electrical
discharge) with light from an LNA laser. This technique has produced between 20% [Milner et al.
1989] and 70% [Nachor et al 1982; Aminoff et al 1989] polarization. The second method
produces polarized *He by spin-exchange collisions with optically pumped rubidium vapor
(see Coulter et al. [1987] and references therein). This method has also produced 70% >He
polarization. In the above work, emphasis was on producing a high density of adequately polarized
*He for use as a polarizer with high-energy neutrons. However, for our proposed new technique to
search for the neutron EDM, the polarized *He density need not be so high, while the polarization
must be very near one (as shown in section 3.6, the sensitivity is a strong function of the *He
polarization).

For our purposes, the most interesting method to produce polarized *He, offering the possibility
of higher polarization than methods based on optical pumping, is to use a magnetic hexapole to
preferentially focus one of the *He spin states in an atomic beam. In a cylindrical hexapole
magnetic field, particles with a magnetic moment experience a radial force

F, = tar?, (3.9)

where the + refer to the two spin states. Under the influence of this force, one spin state is deflected
out of the beam while the other undergoes two dimensional harmonic motion in the transverse
plane. The most famous application of a similar technique (electric-quadrupole focussing of
a molecular electric-dipole moment) was the production of a population inversion in the ammonia
maser [Gordon et al. 1955] where it was estimated that 101> molecules per second were selected in
a solid angle of 4 x 10~ 3 sterad.

Following Ramsey [1956], for magnetic moments in a hexapole field, we find that the maximum

angle which can be focussed is given by
Opmax = / UB/KT (3.10)

where p is the magnetic moment, B the maximum magnetic-field strength, 7 is the effective
temperature of the atoms in the beam, and k is Boltzmann’s constant. With a maximum field
strength of 10*G and a beam temperature of 1K, eq. (3.10) gives @, = 2 x 10™ 2rad, giving
a focussed solid angle of

Q=102%, =12x1073. (3.11)
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Since an atom in the appropriate spin state undergoes harmonic motion in the transverse plane, the
length of the focussing region must be such that one-half of an oscillation cycle takes place during
the flight time, in which case the atom will have zero displacement from the beam axis at the end of
the hexapole region and hence be focussed on the output aperture. This gives a length of the
focussing region L = nr,, /O, Where r,, is the maximum beam deviation from the axis (set by
collimation and magnet design) and the radius at which B is measured. This gives L = 126 cm for
rm = 1cm with the above-listed parameters.
The number of atoms per second leaving a source of area A into a solid angle € is given by

I=4no(Q2n)As™ !, n=4x10°Px300/T, (3.12a,b)

where n is the atomic density, P is the source pressure in Torr, and ¢ is the average velocity of the
atoms in the source (10* cm/s for *He at 1K). By working at a source pressure of 10”2 Torr, we
obtain n = 1.2 x 10*’/cm® and

I ~ 3x10'%atoms/s , (3.13)

using six sources of 1 mm? area each; this production rate is a factor of 5 greater than that required
as discussed in section 3.3. Thus, it appears that we can produce enough polarized 3He for the
purposes of the present experiment. The actual performance of such a device will be determined
by the details of the source orifice (e.g., Zacharias crinkly foils or micropores [King and
Zacharias 1956; Scoles 1988]) and the number and type of differential pumping stages, but we
would expect to achieve a very high polarization, limited only by the background *He in the
vacuum system and spurious magnetic gradients at the hexapole output.

3.5. Detection of scintillations

The reaction *He(n, p)®T yields 764 keV kinetic energy to the reaction products and should
produce scintillations in the liquid “He. Studies of the light produced in liquid “He by o particles
[Roberts and Hereford 1973; Hereford and Moss 1969] or energetic electrons [Stockton et al. 1970;
Surko et al. 1970] or neutrons have shown scintillations at ultraviolet [Stockton et al. 1970; Surko
et al. 1970] and infrared wavelengths [Dennis et al. 1969] and in the visible in the presence of an
oxygen impurity [Jortner et al. 1964]. The highest intensity appears to be in the vacuum ultraviolet;
the ultraviolet emission is detected by coating the helium chamber or a window with an organic
“wavelength shifter” which emits visible light on absorbing the uv radiation.

For reasons of UCN compatability we would have to use deuterated versions of these
wavelength shifters, or a very low concentration of an organic dye in a deuterated carrier. On the
other hand if oxygen coating on the walls could serve as a wavelength shifter the problem would be
considerably simplified. The scintillations produced by a particles and high-energy neutrons have
been shown to result in a quite well defined pulse-height spectrum [Simmons and Perkins 1961].
The extension of these results to the ionization produced by neutron absorption by *He and the
related question of y-ray discrimination remain to be investigated.

3.6. 3He as a comagnetometer

From eq. (3.8) we write the scintillation rate,

S(t) = (pUCN V/Tﬂe)[l - PnP3 Cos 0n3(t)] ’ (314)
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with 0,3(t) the angle between the UCN and *He spins and V the total volume. If both the neutron
and *He spins are precessing in a plane perpendicular to an applied magnetic field, we will have

0a3(t) = (¥ — 73)Bot = Wyt , 3 =~ 1.1y, (3.15)
so that the scintillations will be modulated at a frequency
Wesr ~ Ol'ynBo (316)

at 1/10 of the normal Larmor frequency. A neutron EDM would manifest itself as the addition of
a field-dependent term (4 2ed,Et/h) to eq. (3.15) and could be detected by monitoring the
scintillation rate.

However, we see below that there are still more tricks that can be played with this unique system
of two spin species interacting according to eq. (3.8).

3.7. Elimination of the effects of the dc magnetic field by means of “critical dressing”’

3.7.1. Dressed-spin technique

“Dressed spin” is a term that has been applied to the phenomenon of the apparent change in the
magnetic dipole moment caused by the application of a high-frequency nonresonant alternating
magnetic field [Cohen-Tannoudji and Haroche 1969].

The effect can be understood with the following simple model: Consider a spin, initially pointing
along the z axis. On application of a field

B, (t) = Bsin w st (3.17)
the spin will precess in the y—z plane with a frequency

o(t) = yB,(t) = 0(t) , (3.18)
so that the angle, 6, with the z axis will be given by

0(t) = y(Bys/,£)COS W5t . (3.19)
Thus the time average of the z component of the spin will be

{cosO(t)>r = “lffdt €0S [(yBrs/wi)COs st ] = Jo (yBig/wrg) = Jo(X) , (3.20)

T

with x defined as the dressing parameter. The spin will thus respond to a small field along the z axis
with an effective y

Verr = YoJo(X) . (3.21)

The effect has been demonstrated experimentally with a beam of slow neutrons [Muskat
et al. 1987].
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3.7.2. Critical dressing
If we apply a dressing field to the case discussed in subsection 3.6, i.c. the neutron and 3He spins
precessing in a constant magnetic field, the relative precession rate (3.15) will become
Wyel = ('}’fn“ - ngf)Bo > )’f“ = Jo(x:)7i, Xi=7y:iBy/wyg, i=UCN, *He . (3.22)
We now see that we can eliminate the effect of the magnetic field B, if
Pado(Xa) — 73Jo(X3) =0, y3/yn = x3/x, = 1.112 = « (3.23)
ie.,
aJO(axc) = JO(xc) s (324)
which has a solution at the “critical” dressing parameter
x, = 1.19, Jo(x.)=0.65. (3.25)
Under these conditions the scintillation rate would be constant, independent of the DC magnetic
field, correct up to terms of order (Bo/B,¢)> which can be shown to have no significant effects on the
following discussion.

3.8. Applications of critical dressing to the search for a neutron EDM

In the presence of a nonzero EDM, application of an electric field to the case with critical
dressing will result in a relative precession frequency

Wyep = i(zednE/h) JO(xc) > (3'26)
so that the angle between the UCN and 3He will grow with time as

Ous = Oyt = +2ed,Etth, d, = doJo(x), (3.27)
and would be observable in the scintillation rate. The measurement can be carried out by starting
with the UCN and *He spins parallel so that the absorption rate would be zero in the case of
perfect polarization (or minimum in the case of imperfect polarization). If we then modulate the
dressing field so that

x(t) = x. + ecoswpyt , (3.28)
we will have

Wiep ~ ECOS Wt + kJ,,E , (3.29)

or

80 ~ (¢/wy)sin Wyt + kd, Et ~ 86,(t) + kd, Et , (3.30)
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with k a constant. In these circumstances the scintillation rate S oc (80)?, and in the absence of an
EDM will only show a second harmonic o (88,)2. An EDM will then produce a first harmonic
term increasing linearly in time. The second harmonic can provide a continuous monitoring of the
system.

A more detailed analysis, presented in section 6, shows that the statistical accuracy in terms of
UCN counted, storage time, and electric field, is roughly the same as the conventional method
using Ramsey’s method of separated oscillatory fields. Thompson [1992] has presented an analysis
of a similar, but simplified system which does not include the modulation technique and neglects
several other of the important features which we will discuss in sections 5 and 6.

4. Quantum analysis of the dressed spin system
4.1. Constant magnetic field as perturbation on the eigenstates of the spin in an oscillating field

The problem of a dressed spin has been treated quantum mechanically by Cohen-Tannoudji and
Haroche [1969] (see also Polonsky and Cohen-Tannoudji [1965]). In this section, we review their
work and apply the result to the case of two spins mutually absorbing according to eq. (3.8) (section
3.3). We then consider the effects of imperfect alignment of the constant magnetic field and
higher-order perturbations.

The Hamiltonian for a spin-1/2 particle with gyromagnetic ratio y located in a steady magnetic
field B, along z and a quantized oscillating magnetic field (at frequency w) along x is given by

H = wa'a + yQ2nhw)?s.(a + a') + wys, , 4.1)

where the first term represents the energy of the oscillating field, the second term the interaction of
the spin with the oscillating field, and the third term the interaction energy of the spin with the
constant field (wy = yB,). An eigenstate of the oscillating field corresponding to n photons
corresponds to a magnitude of the oscillating field

(B™)? = dnnhw/L3 = B2/2 4.2)

where B, is the “peak” of the oscillating field when viewed as a classical field.
Following Cohen-Tannoudji and Haroche [1969], we treat the last term in eq. (4.1) as a per-
turbation (B, < B,). The unperturbed eigenstates are

In,m>| = exp[—(As/0)(a' — a)]In)|m.>

= exp[ —(im,/w)(@" — a)]|n>|m.> = |nnDlme) (4.3)

where |m, ) is an eigenstate of s, with eigenvalue m,, |n) is an eigenstate of a'a with eigenvalue
n and energy eigenvalue

Epm, =now—mii’/ow, iL=yQ2rho/L3)'? (4.4a,b)
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so that the states m, = +1/2 are degenerate. The eigenstates |n,, ) defined in eq. (4.3) satisfy

{ns1p2l(n — g)- 112> = <nlexp[(A/w)(a" — a)]I(n — q)>

= J,2A/njw) = J (o, /o) 4.5)

where w, = yB; and J,(x) is the Bessel function of the first kind of order ¢. Polonsky and
Cohen-Tannoudji [1965] obtained eq. (4.5) by expanding the exponential operator in a series and
showing that the series obtained is equivalent to the expansion for the Bessel function in the case
when n, n — q » w,/w.

Since the states given in eq. (4.3) are degenerate for a fixed n, we calculate the effects of the
perturbation wgs, by calculating its matrix elements in the basis eq. (4.3),

<m.’xa n|wosz|n, mx> = <m;c|sz|mx> <nm;|nmx>w0
= {M|s,|m, > {n|exp[(m}, — m,)(A/w)(a’ — a)]|npw,

= (mic[s;my> Jo((my — my)ow, fw)wo , (4.6)

where the last step follows from eq. (4.5) and the fact that only m), = m, + 1 because of the selection
rules on s,. Since Jy(x) = Jo(—x), eq. (4.6) is diagonalized by transforming the eigenstates of s,,
|m, > to the eigenstates of s,, [m, > and the perturbed energy levels are thus shifted from eq. (4.4a) by

wgm, = wOJO(wl/w)mz s (47)

the factor J,(w,/w) representing the modification of the magnetic moment by “dressing”. In the
presence of an EDM interaction, w, in eqs. (4.1) and (4.7) will be replaced by wq + 2dE/h so that
the EDM will be diluted by the dressing in the same way as the magnetic moment as assumed in
eq. (3.21).

Henceforth, we will find it more convenient to work in the ¢ = 2s basis (im = 2m, = + or —). The
correct eigenstates of the Hamiltonian eq. (4.1) are

In,m) = alny S|+ + Bln-dl =Dy, (4.8)

where « and f are determined by the value of m. In our original |m,) representation, we have

10 01 0 —i
""=<0 —1>’ "y=<1 0)’ "’=<i 0)’ *9)

and the m, eigenstates can be written

In,my = (1//2)(In D] + s + imln_ > =) , (4.10)

with energy given by nw + mwy/2 — m?A%/4w. The last term is a constant shift for all levels and so
does not contribute to the time dependence.
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4.2. Time dependence of {a)

We take an initial state with (¢) pointing along the x axis and a superposition of n values
corresponding to a classical field B,. We first consider the matrix elements of & between states with
quantum numbers n and n’, with ¢ = n — n’. Using eq. (4.10), we calculate the matrix elements of o,
in the basis of the eigenstates eq. (4.8),

exp[—i(mw + dm'wa)t] {0, m'|o | n,m) exp[i(nw + tmw,)t]

=3[ Iy ) — im (im)(— D)<'~ [n_ ) Jexp{il(n — n')w + 3(m — m)wy]t}

= 8yw3(1 — m'm)exp[3(m — m')wqat]

_{0, m=m,

A1
Onwexpliz(m — m)wat], m#m . @11

Taking an initial state with spin along the +x axis,

V)= Y a(1/x/2)Immyexplitto + dmo)] 4.12)

nm=1%11

we find the time dependence of the expectation value of o,

Yol (t)) = <a:(t)> = Y a¥a,d, »coswgt =) |a,|*cos wat = coswqt , (4.13)

n

since ¥, |a,|* = 1. Similarly, for o,, the matrix elements between eigenstates are

exp[—i(n'w + sm'wy)t] (', m'| o, n,m)exp[i(nw + tmwy)t]
= exp(iqwt)exp[iz(m — m')wat] J_ (0, /w)im3[1 — m'm(—1)1] , (4.14)
where we have used eq. (4.5) and the fact that J,(—x) = (—1)%J,(x). For g even (odd), the only

nonzero matrix elements have m’ # m (m' = m). To evaluate the expectation value of o, using
eq. (4.12), we first sum over m = +1 and then for every pair of n,n’ we have a term in +g4. Thus

{oy(t))> = —Jo(w/w)sin wgyt
— Y Y agar- {J(w, /o) [sin(gw + w,)t + sin(wg — qw)t]} . (4.15)
g>0,even n
Similarly,
o)=Y Y ayaf_,J(w,/w)[cos(gqw — w4)t — cos(gw + wq)t] . 4.16)

g>0,0dd n

Thus we see that {0, ) behaves as if the spin were precessing around the constant field B, with
a “dressed” frequency wq given by eq. (4.7) while the motion of (o, ) and {o, ) contain harmonics of
the applied alternating field.
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4.3. Time dependence of 6,0,

In a system consisting of polarized UCN interacting with polarized *He the absorption
(scintillation) rate is given by eq. (3.8). We now use the results of the previous section to calculate
the time dependence of (s, - 63 ) starting in an initial state consisting of a product state of eq. (4.12)
for the UCN and a similar state for the *He. Then

(6,:03) =<6,)-<03) . (4.17)
Thus, from eq. (4.13),

{635 0nx ) = COSW,LCOS W3t = 3[cOS(w, — w3)t + cos(w, + w3)t], (4.18)
where we havc/e written @, 3 for the UCN and *He dressed frequencies, eq. (4.7). We further define
Xn,3 = Vn,3B1/w.

From eq. (4.15) and given ¥, |a,|*> = 1, ¢ < nand assuming a,, is a slowly varying function of n, we
find

{03,0ny) = Y Ju(xa)Jy(x3) [sin(w, + qw)t + sin(w, — qw)t]
4,9’ 20, even
x [sin(w; + go)t + sin(w; — go)t] 4.19)

(where it is understood that we take 1/2 of the O terms) which yields for the zero harmonic, i.e., those
terms which remain after averaging over the fast frequencies gw (g > 1),

{63,04,> = 3[cos(w, — w3)t — cos(w, + w3)t]

X ('IO(xn)JO(XS) +2 Z Jq(xn)Jq(x3)> - (420)

q>0, even

Similarly, starting with eq. (4.16) we find the zero harmonic terms

{03, 0n;.) = [COS(w, — w3)t — cos(w, + w3)t] Y J(xa)Jy(x3) . (4.21)

q>0,0dd

Using Abramowitz and Stegun [1972],

Jo(x — y) = Jo(x)Jo(y) + 2 ¥ Julx)Ji(y) 4.22)

k>0
we finally arrive at
03+0,> = 3[1 + Jo(xy — x3)] cos(@, — @3)t + 3[1 — Jo(x, — x3)] cos(w, + w3)t, (4.23)

for the zero harmonic terms. Jy(x, — x3) > 0.99 for x,, x5 in the neighborhood of x., the solution of
eq. (3.23). We have thus shown that the time dependence of the scintillation rate is given by
eq. (3.22), substituted in egs. (3.15) and (3.14), and justified eq. (3.23) for the condition of critical
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dressing. Note that the second term in eq. (4.23) is small and varies at twice the precession
frequency so will average to zero in a practical experiment.

4.4. Effect of an x component of the static magnetic field
We now consider the case when the static magnetic field B, is not exactly perpendicular to the
alternating field, taken as along the x axis. To do this, we replace the last term in the Hamiltonian
(eq. 4.1) by
H' = w§s, + w§s, , (4.24)

and evaluate the matrix elements of this operator in the eigenstates (eq. 4.3) of the unperturbed
problem. Considering only matrix elements between degenerate states we find

1 [/ w§ —1iw5
<n,m;|H'|n,mx>=-2-( ° ) (4.25)

iw; —w§
with wj given by eq. (4.7). Diagonalizing this matrix we arrive at the new first-order eigenvalues,

EM = + 4 /(w5)* + (03) . (4.26)

Thus to maintain the critical dressing in the presence of a nonzero B we must have E{ = E{V so
that the UCN and 3He will continue to precess at the same frequency. This yields the condition

(@ — D(@§/wp)? = [Jo(xa)1* — [adolexa)1* 5 a=7y3/vn @5’ =7.B5” . (4.27)

The right-hand side of eq. (4.27) is zero at x,, = x. = 1.189, i.e., the solution of eq. (3.23). Expanding
the r.h.s. about this point and writing the solution of eq. (4.27) as x. = x. + , we find

(22 — 1)(@f/w}h)? _ 194 (29)2 , (4.28)

1
T 2 a2 (ax o) J1 (0x.) — Jolxe) J1 (Xe) wh

o

so that a minimum value of x. will indicate that the B, field is truly perpendicular to the oscillating
field B§ = 0 and a small misalignment (or random or systematic field variation along this axis) will
only affect x_ in second order. Thus, we have a reliable way to set B§ = 0, and for the rest of our
discussion we assume the static field is perpendicular to the oscillating field and yB§ = w,.

4.5. Effect of variation of the static field

We can use the states given in eq. (4.10) (which diagonalize the Hamiltonian) to determine the
higher-order corrections to the eigenvalues. States of different n are connected by the Hamiltonian
of eq. (4.1), corresponding to the creation or annihilation of g photons by the motion of the spin.
Using egs. (4.5) and (4.10), we can determine the matrix elements of the perturbation in the
eigenstates of the unperturbed Hamiltonian,

I/(n +q,m’), (n,m) = <n + q, mll%woazlrh m> = %wo [lqu(wl/w) - lml']q(wl/w)] . (429)
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The second-order correction to the energy is given by (remembering that the zero-order states are
degenerate in m)

V(n, m), (n’,m’) V(n’, m’), (n,m)
E&= ¥ ) (4.30)

n.m'in'#n
Substituting the matrix elements from eq. (4.29) we find, after summing over m’

g _ L@ ¢ Jioy/) _
" 8 ® q#0 q

0, (4.31)

since the sum extends over all +q # 0.
The third-order corrections to the eigenvalues are given by

IV(n’ m'),(n m)'2
E® = _n.m)\um
n,m (n,m), (n,m) nz:." (E:S’O) _ E;O))z

I/(n,m), (n’’,m’') I/(n",m"), n,m’) I/(n’,m'), (n,m)
YA E T EOEY - EY) @32

Pl T
n',m’ n’,m

Since the two terms above are of comparable magnitude and the second is much more complicated,
we evaluate only the first term. Thus,

2 o 2
Eﬁl, - m%Jo(wl/w)wo <%2> Z L (;;ﬂ (4.33)
q=1

The shift in the eigenvalue 8E® with a small change in the constant field 8B is
SE® ~ Hwo/w)*8wq , 7(Bo + 3B) = wq + Sy , (4.34)

which is extremely small for the anticipated field values (wo/w = 1 x 10~3). The change in critical
dressing parameter, following a similar argument as in section 4.4 is of the order given by eq. (4.34).
This implies that the change in x, due to random or systematic field variations along B, will be
insignificant.

It is also apparent that the direct effects of the applied static electric field cannot affect x, other
than through an EDM; there is no coupling of the electric field to the system constituents (photons
or spin-1/2 particles) in eq. (4.1), other than through a possible EDM term for the neutron or for the
3He which is expected to be small due to electron shielding. In fact in this experiment we will really
be measuring the difference between the neutron and 3He EDMs.

4.6. Numerical solution of free precession with rf and dc fields

The classical equation for the spin motion was solved numerically:

ds/dt =ysx B, B= BscoswytX+ By?, (4.35a,b)
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with w,/2n ~ 10kHz and yB, /2% ~ 5 Hz, for each spin (UCN and 3He) separately, and s,, - 53 was
evaluated as a function of time. A fourth-order Runge-Kutta technique was used with about 20
steps over a single rf cycle. Thus, considerable computing time was required to generate 100 s of free
precession. In addition, a model of the feedback technique described in section 5.4 was used to
determine x., and shows that in principle the proposed technique works. However, since the
numerical integration was quite lengthy, due to round-off errors only qualitative comparisons with
the quantum solution can be made.

The harmonic series egs. (4.20) and (4.21) were qualitatively verified. Most interesting, however,
was the verification of the effect of higher-order perturbation and field misalignments on x.
[egs. (4.28), (4.31) and (4.34)].

The dressed spin system is a vivid example of the power of quantum versus classical perturbation
theory. It is obvious in this case that the quantum-mechanical perturbation works because the
system can be described fully with the never-changing eigenfunctions; there is nothing analogous
for the classical system. The solution of the spin-1/2 Bloch equations with arbitrary strength
oscillating and static magnetic fields is an analytically difficult problem.

5. Interaction of UCN with 3He
5.1. Introduction

The interaction of a neutron with a 3He atom is described by a complex coherent scattering
length, the imaginary part being necessary to account for the large absorption cross section. In our
discussion, we have so far neglected the real part which leads to the so-called Abragam pseudomag-
netic field [Abragam and Goldman 1982; Abragam et al. 1972]. Both the real and imaginary parts
of the coherent scattering length are spin-dependent; therefore, there is a spin dependence of the
Fermi potential [Foldy 1945; Steyerl 1977; Sears 1989; Ignatovich 1990; Golub et al. 1991] (real
part) and a spin dependence of the UCN-*He absorption rate (imaginary part). The latter has
already been described in section 3. The spin dependence of the real part of the scattering length
leads to a spin-dependent Fermi potential which is indistinguishable from a magnetic field and has
a magnitude of order 10~ 2 Hz for the anticipated *He density. This leads to a number of problems.
First, the pseudomagnetic field is unlike an externally applied magnetic field in that the dressing
does not eliminate its effects on the relative spin precession. Second, the pseudomagnetic field is
perpendicular to the electric-field axis; the neutron spin precesses around the vector sum of the
small EDM field and the much larger pseudomagnetic field. This leads to a reduction in the
experimental sensitivity. In this section, we will determine the relative spin motion with the full
neutron—>He interaction when the modulation of the dressing parameter as described in section 3.8
is applied.

The calculation is most readily carried out when the dressing-parameter modulation is a square
wave. We assume that the spins are initially parallel. The dressing parameter is first shifted by
a small amount x,,, giving a relative precession frequency between the *He and UCN spins of o,
(equivalent to a magnetic field, which affects only the UCN spin, along £ in a frame rotating with
the *He spin), @, = yBo[ Jo(Xc + Xm) — aJo(a(x. + X))] for a duration 7/2. After this period, the
dressing parameter is changed to x. — x,, giving a relative precession frequency of —w, for
a duration 7. Thereafter, the dressing parameter is alternated giving + w,, each with duration 1.
The net effect is that the relative spin angle is triangle-modulated between +¢ = +w,1/2, leading
to a periodic variation in the scintillation signal at twice the modulation frequency (2 x 1/27). If
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there is a relative precession between the spins (due to, e.g., an EDM), the relative spin angle will
become asymmetric, with the asymmetry growing linearly in time as described in section 3.8. Thus,
an EDM would produce a periodic variation in the scintillation signal, with frequency 1/27, and
amplitude growing initially linearly in time but limited, however, by precession around the
pseudomagnetic field as discussed below.

5.2. Time evolution of the UCN spin with modulated dressing

The neutron 3He coherent and incoherent scattering lengths have been experimentally deter-
mined [Koester et al. 1991],

b, =573 — 1.483ifm, b= —2.5+ 2.568ifm ,
which gives spin-dependent scattering lengths

by = b+ [I/(I + 1)]*?b; = 4.29 + 0ifm
for the neutron and *He spins parallel, and

b_ =b,— [(I+ 1)/I1]'?b; = 10.07 — 5.93ifm

for the spins antiparallel. As we have already discussed, there is mutual absorption only when the
spins are antiparallel. The difference in the real parts of b, and b_ gives the pseudomagnetic field
which is coincidentally very nearly equal to the imaginary part of b_. Thus, the relative spin-
precession frequency is equal to the mutual absorption rate (for the spin antiparallel) to rather high
accuracy.

As the number of *He atoms in the system is always much greater than the number of UCN we
can take &5 as a classical field in the x direction. In addition, we take the modulation field in the +z
direction. The Hamiltonians for the relative motion of the two spin species [see eq. (4.23)] and the
two directions of effective modulation field are

H; = —%i[l/’fo — (P3/tuc)0,+63] + AP36,03 + 0,06,-% ’ l/to = I/TWB + 1/tqe , (5.1)

where A is the pseudomagnetic field. The total Hamiltonian for the system consists of the sum of
egs. (5.1) and (4.1). As eq. (5.1) is much smaller than the first two terms of eq. (4.1) we are effectively
taking it as a perturbation. The time-averaged effects of eq. (4.1) are given by eq. (4.23). Foreq. (5.1)
we have

—i/1 0 tw, PyA’ i
) P— + A =4 .
= o (0 l>+<P3A' ?w)’ t ot (5:2)

with 4’ a complex quantity. The matrices are in the space of ¢, which we write as & in the following.
Then

exp(—iH 1 t) = exp(—t/219)[cos Vi —ia- V(sin V1)/V], V= +w,;+ P;A'%, (5.3)
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where £, £ are unit vectors. Further we have

(—iH, 1) (—1)2 )(cos Vt Fiw,S —iP3A'S > (5.4)
exp(—i = exp(—t/2t , .
P * P 0 —iP3A'S cos Vt + iw,S
S=@inVt)V, View?+ (PA)xw?, (5.5)
neglecting terms of order & = (P3A’/w,)* which we will do from now on. Then
exp(—iH, 1) = exp(—1/27,) exp( Fiw,t) —iesinw,t (5.6)
P £t} =exp T\ igsinaw,e exp(tim,t) /)’ :

We apply the field + w, for time 7 followed by the field — w, for time 7 to produce one modulation
period of length 2t. Then

U_;+(27) = exp(—iH_t)exp(—iH.; 1)

_ _ 1 —i2eexp(iw,t)sin ,1 2

= exp( T/T°)< —i2gexp(—iw,7)sin w,7 1 ) +0E)

_ 1 bexp(iw.7)\ _ _

= exp(—1/70) <b exp(—i, ) ) ) = exp(—1/t0)(1 + bo3) , (5.7

0 exp(iw, 1)
exp(—iw,1) 0 ’

b= —2igsinw,r = —2i(P3;A'/w,)sinw,1 , o= <
where a; is a component of 6. After n periods we will have (see appendix A)

Up=[U-+201 = {3[(1 + b + (1 — b)"] + 3[(1 + b)" — (1 — by a;}exp(—nt/t0) . (5.8)
Now

(1 £ b= {1 F2iPA'[(sinw,7)/w,T]T}" . (5.9
If we put © = T/2n where T is the total elapsed time, using (1 + x/n)" — ¢* for n > 1, we can write,

(1 £ by" ~ exp[ FiP; A'T(sinw,1/w,7)] =™ .
Then

F., F_ exp(iwzf)> (5.10)

U, = 3exp(—T/2
zexp(—1/ TO)(F_ exp(—iw,1) F,

Fir=[e"*+e?], a=bT/r. (5.11)
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Now we start with a modulation period of 7/2 with the field in the minus direction so that the
neutron spin will always be symmetric about g,. Then

Uio(T) = Upexp(—iH-1/2)

F, F_exp(iw,7) [/ exp(iw,1/2) 0
= dexp(~T/2r0) (F_ exp(—io,)  F, ) ( 0 exp(—iw,r/Z))
F, exp(iw,t/2) F_exp(iw,t/2)
= dexp(=T/2%) (F_ exp(—iw,7/2) F, exp(—iw,r/2)> ' (5.12)

For initial states . (0) = (1/\/5)<:1> corresponding to the neutrons polarized parallel (anti-
parallel) to the x axis we have -

U+(T) = UnTI(0) = ﬂ’%‘ﬁ Y ] i} (5.13)

ob(T) = %T—z/ﬁ)m pp (200, (5.14)

(6> =Y%oy = + texp(—T/10)|F+ + F-|*cosw,t . | (5.15)
Now we have

(F, + F.)=2e"%, (F, —F.)=2¢",

[Fo + F_ [ = 4exp[(Py T/eue)sin o, D/, 7]

[F. — F_[? = dexp[— (P Tfeue)sin o, /]

—ia =[—i1P3 AT + (P53 T/214.) 1 sin ,7)/w, T . (5.16)

Then

(6.>+ = kexp(— T/to)expL (P T/eue) sin 1)/, 7] (cos 0,7). o 61)

It can be seen that the neutron spin evolves according to the time average (over a modulation
cycle) of the mutual interaction Hamiltonian. In this case the time dependence of <o) is not
affected by the Abragam term which is proportional to 4. This should be compared to the case
without modulated dressing discussed in appendix B. If we note that sin w,t/w, 7 is the time average
of cos 8,,5(t), the result eq. (5.17) with modulation shows classical behaviour in that there is only one
decay constant for a given initial state while the familiar case of a time-dependent perturbation
would show a “quantum” behaviour with a superposition of two decaying states.

The effect of the EDM is to replace o, — (w, + w.) and w; = (—w, + w,). Then

[Vil? = (@: £ 0)* + (P34')* = 02 + (P34')* £ 20, 0, (5.18)
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[see eq. (5.3)]. We then find that eq. (5.6) is transformed to

] exp[ Fi(w, + w.)t —1iP3A'S
exp(—iHy 1) = exp(—1/2%) ( pLF(@, £ wo)t] Ps S ) , (519)
—iP3A'S 4 exp[ti(w, + w.)t]
so that
U+(2T) — e—iH_re—iH+r
i < e—Ziw,t _ (P3A')2S+S_ ___iP3Aleiw,t[S+e—iw,t + S_eiw,t]>
=e Ut , . . .
—iP3;A'e 7S _e 79t + §, €'9°7) eZioe — (P3A')*S,S-
g~ 2iwer — 2igel®* sin w,1
=g w0 L . 2 . (5.20)
—2ige '’ sinw,7 gt
Thus
e e—liw,t beiw,t
U_,Qr)=e" (be"“’" emet> (5.21)

Writing 6, = 2w.7 we have

10 —i0,  bele=t -
U‘*(?"):e”m[(o 1>+<be'1“*’=‘ i >]=° L) + g V], (522

where (62 = 1)

-V —if, beie= 2 2 .
. = ——— = = . N = - ~ bz . .2 ,b
-V % V=9,V <be"“’=’ i0, ) , V b* — sin“6, (5.23a,b)
Now

Ur=e "r[(1)+ Vo,]". (5.24)

Using the definition of b [given after eq. (5.7)] and putting cos @ =~ 1 [see definition of o after
eq. (5.9)] we see that

(L+by=c™, (1+b)fey=Fs. (5.25)

where the subscript [ +b] refers to the odd and even parts (with respect to b). Then

U" =4e ™*°[F.(1) + (F-/b)o- V], (5:26)
R I o s
F_g™'o=* F, +i(F_-b)sin#,
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Since iF_ /b = 2(sin /) T/, we see a dilution of the EDM signal by a factor sin a/a. This factor
enters because the neutron spin precesses about the net field which includes both the EDM and the
pseudomagnetic field. We will discuss methods to eliminate this effect in section 5.4.

It is now straightforward to work out the scintillation signal. We proceed to calculate ¢, from U"
(eq. 5.27) following the same procedure that led from eq. (5.10) to eq. (5.17). The result is that the
scintillation rate per neutron is simply equal to the probability that the neutron exists at time 7,
multiplied by 1/7,,, [see eq. (3.8)]. The total rate is then proportional to Ny, the initial UCN
density. Defining R, as the absorption rate for UCN originally in the state with 6, = +1,

N

THe

Ry

e—T/to |:e:tyT ¢P3 (ein 512)(1::21 + Zwe Tr]i sin (L)z’f):l ’ (528)

where the second term represents the average scintillation rate due to the second harmonic and the
third term the peak of the first harmonic, and

_ e — cos QT) + Qsin O7

12 @2+ 99T ‘
Q=2Req, y=2Ima, a= Pty
, i
A=Aty (5.29)

We arrive at the scintillation rate &,
Dty /No = 3(1 + Po)R, + 3(1 — Py)R_

LT .
= e~ T/ (e’T +e T — P, %w—;ﬂ—(e” —e ) — 20w, TP;3sin w,t(n+ + r]_)>

z

+ }PyeTho (e’T — T _ p, RO (T 4 =T _ 209, TP, sin 7 (n — n—)) :
(5.30)
N+ —n- =[yET —e ’T) + 2Qsin QT /(Q? + y*)T (5.31)
N+ + - =9€"T + 7T — 2c0s QT)/(Q%* + y))T . (5.32)

It is evident that there is an EDM signal even in the absence of an initial UCN polarization
(Po = 0). This is because the UCN become polarized during the measuring time. Also, the EDM
signals are diluted by a factor ., + n_ due to precession around the Abragam pseudomagnetic
field.
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5.3. Solution by use of the secular approximation

Since the frequency with which w, is modulated, w,, = 2#/7, is much larger than the other terms
in (5.1) we are tempted to look for a solution using the secular approximation (see appendix B;
Happer [1972] and Barrat and Cohen-Tannoud;ji [1961]). According to this approximation we
can neglect rapidly varying terms in the equation for the time derivative of the density matrix if the
magnitude of these terms is small compared to the modulation frequency. If we go into a reference
frame which is always rotating with the Larmor frequency of the neutrons and, if the 3He spins are
in a plane perpendicular to the z axis, we will see the *He spins as making an oscillating motion
about some axis (which we can take as the x axis) with a maximum amplitude w,,t. In this frame
there will be no effective field along the z axis and the modulation frequency will be much larger
than the magnitude of the terms in (5.1) depending on @,-03, so we can apply the secular
approximation which yields

(B,+63) ={cosb,3), (5.33)

where 0,5 is the angle between the spins. In the case of square-wave modulation of w,, {cos 8,3 > =
(sinw,7)/w,.

Note that if instead of the above procedure we chose to work in the reference frame rotating with
the *He spins, as we did in section 5.2 above, we would have a nonzero component of w, which was
rapidly modulated, but we would not be able to apply the secular approximation in this frame
because w,/w, = w,7/7 = 0, /n where 8, is the maximum modulation angle and is not necessarily
small compared to 1. By a similar argument, the secular approximation cannot be applied in the
laboratory frame.

The calculation is most readily performed with the density matrix. At 7 = 0, we have

({1 + Py)/2 0
0= (U1 ) 39

The time dependence of the density matrix is given by

p(T)=UYT)pO)U(T), U(T) = e KEOT (5.35a,b)
and (H) is given by ({ ) represents the time average over many modulation cycles)

(H) = —3i[1/19 — (P3/tge){cos 8)>0,] + AP;{cos )0, + w0, , (5.36)

where o,, o, refer to the neutron spin.

Equation (5.35b) can be expanded as shown in eq. (5.3) and it is straightforward to work out the
expectation value of 4. The result of this calculation gives a scintillation rate equal to that derived
above (eq. 5.30), with (sin w,1)/w,T replaced by {cos ). We can thus use the result with any type of
modulation; sinusoidal, square wave, pulse, etc., with the final choice based on ease of application
and maximization of the signal-to-noise.
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5.4. Elimination of the pseudomagnetic-field suppression by feedback to w,

- A practical means of extracting the EDM signal is to keep the first harmonic zero by feeding
back to the dressing parameter. By measuring the dressing parameter as a function of electric-field
direction, the neutron EDM can be determined. In such a system, the calibration does not depend
on the initial density, polarization, etc., which can vary between measurements.

The effects of feedback are most readily studied by use of the density-matrix approach outlined
in section 5.3. To illustrate the method, we first consider a system where there is no UCN loss and
the pseudomagnetic field has no imaginary component.

If the neutron and *He spins are parallel (along £) and we apply a field which affects the neutron
and *He spin differently, e.g., an electric field interacting with a neutron EDM, of magnitude
w. < A along £, the angle between the spins initially changes linearly in time; that is, the
y projection of the neutron spin s,(t) = w,t, as is evident from eq. (5.3). It is only when At — 1 that
the sin o/a [see eq. (5.27)] suppression becomes significant. Furthermore, the modulation in essence
serves as a measurement of the y component of the neutron spin, so long as on average the neutron
spin lies approximately along £, the *He spin. Since the first harmonic in the scintillation rate
@, o« s,, we can study the feedback by considering the behavior of s,.

Since the applied field determines the rate of change of the relative spin angle, the UCN—*He
system is mathematically equivalent to the voltage-controlled oscillator of a phase-locked-loop
(PLL), with the first harmonic signal equivalent to the voltage output of the PLL phase detector; we
can therefore design a feedback system based on the well-developed PLL techniques [Gardner 1979].

However, in our case, the feedback occurs only after successive modulation cycles. s, is
determined by the difference in scintillation rate between the two modulation directions, hence we
can only supply a correction after a complete modulation cycle. This problem is difficult to attack
analytically so we present here the result of a numerical simulation. (However, since the modula-
tion frequency can be very high, the system can be modelled fully through the secular approxima-
tion; we perform the full calculation here to demonstrate the applicability of this approximation.)

The numerical procedure is as follows (P, = 1, P; = 1, the 3He spin is fixed along £ and the
scintillation rate is proportional to the £ projection of the neutron spin; consider first the case with
no UCN loss, where 4 has no imaginary component):

Start: Setw,, 4
T=0
Loop: T=T+ 2t
p(T) = UL ()p(T — 1)U, (7)
$8:0+ =Tr[p(T)s,]
p(T + 1) = UL@p(T)U-()
(Sxp- = Tr[P(T+ 7)5x]
W=, — o({8x >+ — {8:)-)
W, =0, + 0. = P({sx)+ — {8x)-)
Go to Loop

In this procedure, U, (7) is as defined in eq. (5.19) with t the modulation half-period, w, represents
the correction to the applied % field, « and § are effectively the constants in an integral plus
proportional PLL feedback system, as shown schematically in fig. 7.

Results in the case A=006s"! and w,=00ls"' and very weak modulation
[(sin w,7)/w,T = 0.99] are shown in fig. 8. The values of the loop parameters « and B were
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noise « v &,

+ “Bn
> >

Fig. 7. Schematic of a feedback system following standard phaselock techniques. @, represents the total magnetic field seen by the
UCN.

purposely chosen to give a very slow loop response (7 & 155s). There are a number of interesting
points evident in the plots. First, the neutron spin must precess before there is a correction signal to
be fed back on. During this time, the spin precesses around the vector sum of the fields and so no
longer lies in the x—y plane. Referring to fig. 9, the neutron spin precesses about the net field at
a frequency w = (4% + w?)!/? ~ A. The tip of the neutron spin moves along the circle of radius
r = w,/A (for the magnitude of the spin vector s = 1) indicated in fig. 9, and in a time 7., moves
a distance rA7.. The final spin projection along the z axis, assuming no feedback before 7; and
rapid feedback after 7, is

s, X rAtL(A1)/2 = w ATE/2 . (5.37)

For the first harmonic to be held at zero (the system in an equilibrium state), the spin must lie along
the final net field, that is,

s| AR + w3, (5.38)
so in the final equilibrium state we have (for s, < 1)
w,/A =5, = w A1t /2, W, = w, A%t /2, (5.39a,b)

which represents an error in the feedback signal (in an ideal system, the final value of @, should be
zero). This effect is evident in fig. 8 where ) ~ 1 x 1073, With the above-stated loop parameters,
eq. (5.39b) gives w, = 8 x 1074, in good agreement with the numerical-calculation result, parti-
cularly when the simple-minded loop model used in the derivation of eq. (5.39b) is considered.
The results of a full calculation including losses is given in fig. 10. In this case,
The = 5Tuen = 004571, 4 =002 —002is"!, Py=P,=1 and w,=10x10"* (again, weak
modulation). After every 100s, the sign of w, is reversed. The loop parameters were purposely
chosen so that the loop is underdamped initially, however, as the effective system gain decreases
with time (due to neutron loss), the loop becomes underdamped. Also plotted is the factor sin o/a
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Fig. 9. Illustration of source of the feedback error due to the finite loop response time. The spin is initially along the x axis and precesses
around the vector sum of the pseudomagnetic field along x and the magnetic field along z. In a time 1, , the spin vector, initially along x,
precesses out of the x—y plane by an angle ¢ ~ w,A1/2.

which illustrates the level of suppression of the EDM signal to be expected (for the electric field
applied in a fixed direction) in a system without feedback. Clearly, this reduction factor is absent in
the feedback response, and the correction signal, w,, accurately tracks w,.. The results show that in
the case of fast loop response and relatively small ., the error in the feedback is very small.

It is evident from this analysis that feeding back to keep s, = 0 (or, equivalently, keeping the first
harmonic zero) eliminates the sina/a suppression. An important advantage of the feedback
technique is that the system is automatically calibrated; feedback by changing the dressing
parameter (either w, or B,) results in a directly measurable quantity, dx., which depends only on
the applied dressing field and has a fixed calibration. The experimentally measured parameter
which gives the EDM is the feedback correction signal as a function of electric-field polarity.
Explicitly, from egs. (3.20) to (3.23), with wy = yB,,

wol Jo(xe £ 6x.) — 1.1Jo(1.1(x, + 8x.))] + 2ed E/h=0, (5.40)
which leads to
2d,E/h ~ 2wy dx, . (541)

We point out that another technique to eliminate the effect of the sina/o term is to set the
modulation angle so that the average spin angle (cos#) = 0. In the case of square-wave modula-
tion, this requires a maximum angular deviation (defined as 6,,) 8,, = n. In the case of sinusoidal
modulation, the maximum angle 0,, must satisfy Jy(0,) = 0 where J, is the zero-order Bessel
function, which interestingly is the same condition to eliminate the magnetic moment with rf
dressing. This is to be expected as the effects of modulation of the spin orientation are the same as
described in section 3.7 in regard to rf dressing, only the time scale is different.

5.5. Effects of the z component of the pseudomagnetic field

In practice it will be impossible to control the angle of the *He and neutron spins to better than
1073 rad. Thus there can be a component of the pseudomagnetic field along 2 of order 10~ 3 4, and
A < 10”2 Hz, giving a relative shift of 107 Hz, which is a factor of 10 to 100 larger than the
anticipated sensitivity per measurement period. This shift can vary between fillings and will be
time-dependent as the *He polarization decays. Since the shift is independent of E, a possible way
to contend with this problem is to vary the electric field periodically over the course of a measure-
ment and to look for a correlation between the field polarity and feedback signal. Since the effects
due to the external magnetic fields generated by charging or leakage currents are strongly
suppressed [see egs. (4.28) and (4.34)], the field-reversal rate could be relatively high (5-10 reversals
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over a 1000 s measurement interval), as shown in fig. 10. There is some dead time for one must wait
approximately 7; between reversals, and the field cannot be switched instantaneously, but we
expect this to result in no more than a 10% loss in sensitivity.
5.6. Effects of offsets in the first-harmonic signal

Voltage offset in the first-harmonic phase-detector output leads to additional time dependent
shifts in w,. If we include the offset as a constant voltage ¢ added to the output of the first-harmonic
detector, the feedback keeps the sum

8,0 +e=0. (5.42)

The spin precesses in the applied magnetic field according to (neglecting losses or the spin
dependence of Im A4)

ds/dt=sx B, B=Ax+ w,%, (5.43a,b)

where A is constant and w, is determined by the feedback necessary to satisfy eq. (5.42). Expanding
eq. (5.43a), using s, = ¢, a constant, we obtain the following equations:

S, = ew, , $,=0= —s,0, + 5,4, §, = —¢eA . (5.44a,b,¢)
The last of these equations can be readily solved,

s, = —&At . (5.45)
The first two can be combined yielding

gAs, = 5,5, , (5.46)
which leads to

—&? A%t = 5,5, . (547)
The exact solution of this equation is

se=+/1—(Bt)2, B=c¢A. (5.48)

We thus obtain, from eq. (5.44a)

w, = —eA%t/ /1 — (Bt)* ~ —eA’t . (5.49)

The approximate result can be obtained from egs. (5.44b) and (5.45) directly by assuming s, = 1.
This result is unmodified in the presence of spin-independent losses, however, an additional time
dependence is introduced if the neutron polarization varies with time, but this is expected to be
a realtively weak effect.
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This source of spurious shift can be kept small in a well-designed system. In addition, reversal of
the electric field as described in the last section provides an additional discrimination against this
effect.

6. Noise analysis
6.1. Model of the system for noise analysis

The determination of the signal-to-noise and hence the ultimate sensitivity to the neutron EDM
is simplest in the context of feedback system analysis as described in section 5.4. A block diagram of
a possible scheme is shown in fig. 7 and follows standard phaselock techniques.

Although the scintillation signal decays in time due to UCN loss, over a sufficiently short
interval, the feedback system responds as a true phase-locked loop (PLL) [Gardner 1979]; that is,
the first harmonic of the modulation signal depends on the average angle between the *He and
UCN spins which is given by [ w,(¢)dt, and hence its Laplace transform is

n) =" Jwe(t)dt: Vi(s) = Vowe(s)/s (6.1)

with ¥V, depending slowly on time. That the form of the first harmonic-signal is given by eq. (6.1)
can be readily seen by considering eq. (5.30) for T small: n, —#_ = 2 and 5, + n- = yT which
implies that the first w, term of the rhs of eq. (5.30) increases as 72 while the second term increases
as 7. We can thus neglect the first term since the feedback will be much faster than y or . To model
the system, we need only consider the relative motion for very short times after the application
of w,. The Laplace transform of a linear ramp is 1/s> while that for a unit step of amplitude w,
(at T = 0) is w./s which when substituted in eq. (6.1) reproduces the expected 1/s?> dependence.

The signal-to-noise is most easily parameterized by the wall (and ) loss time 7,; this is the one
parameter in the system which cannot be easily changed. We thus need to optimize the following
system parameters: the fill time 7;, the *He absorption rate 1y, the modulation angle, and the
duration of the measurement 7, all as a function of P;, the *He polarization.

6.2. Initial polarization and UCN density

We start with a density of *He in the UCN storage volume giving a nominal loss rate for the
spins antiparallel of 1/1y, with polarization P, and irradiate the entire volume with a 8.9 A neutron
beam giving a total production rate of @, UCN per unit volume. [Kilvington et al. 1987; Golub
et al. 1991; Lamoreaux and Golub 1991]. The total number of the two UCN spin states depends
on time as

Ny =V®,/2 — Ny /typ — (1 F Ps)/the , (6.2)

where + refers to the UCN spin parallel or antiparallel to the 3He spin and V is the
system volume. After collecting UCN for a time T;, we find the initial UCN number and
polarization (the loss of 3He is negligible; it is also assumed that P, is constant throughout the
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entire measurement),
Ni(Tr)= N2 = (V®,/2y:)[1 —exp(—=y: T1)], v+ = 1/tup + (1 FP3)/the - (6.3)
The initial number of UCN is No = N9 + N°.

6.3. Analysis of harmonically modulated dressing

For simplicity, we consider the case where the dressing parameter is harmonically modulated. In
the presence of a nonzero EDM, the relative precession rate is given by

W= W, + W,CO8 WLt , (6.4)

which gives a relative spin angle

t

@) = Jw dt = Jwe(t)dt + (@, /05 )COS Wyt . (6.5)

The modulation index is defined as ¢ = w,/w,,. The time dependence of the modulation signal is
®(t) = [N(t)/tue][1 — PsPy(t)cos 6(1)] , (6.6)

where N(t) is the total UCN density. Using the well-known Bessel function expansion in the case
w.t < 1 we find the average scintillation rate, first harmonic, and second harmonic (in w,)

@o(t) = [N(t)/tuc1[1 — P3Py(t) Jo(e)] , (6.7)
®,(t) =2 AT’ © p. P (1)J, () J‘a),(t)dt, &, () = 21’ © p.p ()0,6) . (6.8a,b)

It should also be noted that the UCN-3He system evolves under the average *He polarization
which is (P3) = P3Jy(€).

6.4. Evolution of the UCN polarization and density under modulated dressing

During the EDM measurement period, the 8.7 A beam is turned off: however, the UCN density
and polarization continue to change with decay rates, given by

Vi = Vtep + (1 FL{P3))/the - (6.9)
The time evolution of N, is then

N:(t) = NEexp(—7yst). (6.10)
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The UCN polarization time dependence P,(t) and UCN density N(t) are given by

N,(t)— N_(t)

RO=N o+ o’

N(t)=N.(t) + N_(t) . (6.11a,b)

Since y, < y_, the UCN polarization continues to increase over the course of a measurement
period.

6.5. Noise analysis in the feedback system

As discussed in section 6.1, over a short enough time interval, the feedback system introduced in
section 5.4 behaves as a true PLL. This is evident from eq. (6.8a) where the first-harmonic signal
increases linearly in time for constant w,; this signal is proportional to the angle between the spins
and hence is exactly analogous to the output of the phase detector in a PLL. Following standard
system analysis, and as given in eq. (6.1), we introduce the Laplace transform to describe the
response of the system to a unit step in w,;

L(P)=0y/s=Z1(5), oy =0,(t)=2N(t)P3P,(t)J,(e)/the » (6.12)

where a is time-dependent but varies much more slowly than the loop response time. For the loop
analysis which involves time intervals short enough so that «; does not vary appreciably, we will
take «; as a constant; however, we then consider the system gain adiabatically varying over the
course of a measurement and will take the average system noise (over the measurement time),
which depends on the gain, as the uncertainty in the EDM measurement.

As already mentioned, fig. 7 shows an integral plus proportional feedback system. For noise
analysis, it is convenient to look at the response of the output from the first filter which has
response

Zs(s) =B + o/s, (6.13)

where o™ ! is the integrator time constant and B the proportional component. The system response
to a unit step of height w, at point A in fig. 7 is

. . o) L)L)\
Brm Vou(t) = lim s (H ©) ) = lim (“" T+ x.%(s).%(s)) = (6.14)

where an arbitrary scale factor relates volts to Hertz (gain of the voltage controlled oscillator; this
factor can be absorbed in «). At sufficiently low frequencies (less than the loop natural frequency)
the loop tracks the input variations exactly.

The loop response for harmonic inputs is given by H(iw). In particular, for a harmonic input at
point B, the output response is given by

Vou = ViniwH (i) /o = iw/a, , (6.15)

for sufficiently small w.
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Shot noise due to the average scintillation rate adds noise to the system at point B. The variation
in scintillation rate in a time T is

5Py = /Bo/T, (6.16)

or, using angular-frequency bandwidth to specify the time interval (6w = n/T), we obtain the
mean-square fluctuation per unit bandwidth,

Ry = ¢0/n . (617)
since shot noise is white. The fluctuations in ¥V, are then
Vou = noo?/ai (6.18)

per unit bandwidth.

As proposed in section 5.5, the electric field will be modulated during the course of a measure-
ment. We assume for now that this modulation is square; if the modulation frequency is much
less than the loop natural frequency, the output voltage will be V,,(t) = + . as in eq. (6.14)
with a reversal rate of T4 !. The mean-square average of this is wZ; the uncertainty in the
measurement of w, is then given by the ratio of eq. (6.18) to the mean-square modulation deviation
for unit w,,

(Bw,)? = now?/u (6.19)

per unit bandwidth. This signal is averaged for a time 7, (for each modulation direction). We can
model this averaging as a filter which has unit response for w < n/7, = w, and passes no signal of
higher frequency. In that case, the variance in the output is

o2 = jdw now?/a? = tngwd/ja? . (6.20)

0

Since n, and a, are slowly varying functions of time, the system senstivity is given by the average
variance over the entire measurement period as discussed previously,

Tm

(6*> =(1/T,) J a2(t)dt . (6.21)

0

Over the entire measurement period, we can perform T,/27, uncorrelated measurements
(T, > Tp), where the EDM is given by the difference in subsequent field directions [the variance per
EDM measurement is thus twice that given in eq. (6.21)]. Furthermore, over a long period T > T,
we can perform T/(T,, + T;) measurements (where 7; is the fill time). The system sensitivity
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(in time T) is

Tm
T+ T2Ty 1 [ 10(t)
T T, T.)3 m o007

T+ T; 2T,

2 _
(Bae)” =2—7F T.

(62> =2

[

Tm

P T+ T 1 1 [ &)
= 77z | et
3 T Tm To al(t)

0

(6.22)

We must minimize Aw, with respect to T,,, T;, Ty, and the modulation index ¢, given 7,4 and P;.
We can scale all the times with 7.5 and let T, = T,,/m with m an integer. The final frequency
sensitivity is thus (in time 7)

Ao, = /1737m(1// T)(1/\/Tup) U/ VB, Tup) £ Ty Tt e (6.23)

Tm
1/2
T+ T | 20(t) dt) , (6.24)

f(ﬁ, Tm, T;', THe) = 2 ( T:l W
0

where @, and o; have been divided by V'®,1,4. The minimum value of f as a function of P is shown
in fig. 11. Also plotted are the values of the parameters (divided by 7,) which minimize f. The fill
and measurement times are relatively constant as a function of P; with T; = 0.9t and T, = 21,4
so are not shown in fig. 11.

If we assume P; = 0.95 (f =~ 2) over the course of a measurement, the frequency uncertainty is

Aw, = 2am//3)(1/\/Tup T)1/x/PptugV (6.25)
giving an EDM uncertainty of
6(d,) = hAw./4EJy(x.) . (6.26)

This can be compared to the EDM uncertainty from the current EDM experiments using Ramsey’s
method of separated oscillatory fields (neglecting dead time due to filling and emptying times which

might be as much as a factor of \/5 in the Hg comagnetometer experiment),

o(d,) = (WE'\/N§tosT) !, (6.27)

where o ~ 0.65 is the fringe visibility and, in the present UCN experiment, is coincidentally
approximately equal to Jy(x.) = 0.65.
There are several important differences between these two methods. First, in the new technique,

the final uncertainty scales as 1/7,4 as opposed to 1 /\/1775. This is because for the new technique
both the initial density and frequency uncertainty per measurement depend on the system UCN
loss time. The new technique also has a reduction in sensitivity because the effective coherence time
is reduced by relaxation from the 3He. The most important reduction in sensitivity comes from the
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necessity of reversing the electric field over the course of a measurement; this gives the factor
m which for a practical experiment must be at least 4. If we take m = 4, the ratio of sensitivity for
the two methods is

_old) _ E No /153 ~ »
" 0@ T E Ny S 21 No=®,tupV, Jolx) =o' . (6.28)

As discussed in section 3, we anticipate a factor of 5 increase in electric field. Also anticipated is an
increase in wall loss time from 100 s in the present experiments to 500 s. The present UCN density is
about 2 cm ™~ 3; as discussed in section 3, a factor of 10 000 increase in N, is reasonable and requires
@, = 60s~ ! cm~? with the wall loss 7,3 = 500 s (assuming the experimental volumes are the same
which is a quite reasonable expectation). With these, we get an increase in sensitivity of (including

the \/3 due to fill and empty dead time)

n=2534. (6.29)

Using egs. (6.25) and (6.26), we find using t,p = 500s, E = 50kV/cm, V' =2x10* cm?, and
@, =40cm™ s~ !, that the experimental sensitivity per unit time of running is

o(d,) =8x10"2%ecm in one day , o(d,) =4x10"%°ecm in one year. (6.30a,b)

That is over 2500 times more sensitive than the current experimental limit which was obtained in
a similar length of time (but was limited by systematics), and is over 500 times more sensitive than
the result anticipated in the Hg comagnetometer UCN experiment.

7. Some technical questions in regard to the proposed experiment
7.1. Overview of the experiment

We present in this section a very brief overview of some technical considerations and show that,
in principle, the proposed experimental search for the neutron EDM is possible.

The various design considerations are all rather strongly coupled; for example, the choice of
superfluid bath temperature affects the 3He diffusion time, neutron-storage time, high-voltage
properties, and scintillation properties, all of which suggest the lowest possible temperature
(~0.5K). However, for a heat-flush technique to be effective at removing depolarized *He from the
superfluid bath, a rather higher temperature is required (&1 K) [McClintock 1978; Hendry and
McClintock 1987].

This leads us to propose a system where the purification of the “He is performed in a separate
chamber from where the EDM measurement takes place. The purification can then take place at
a higher temperature; varying the temperature of the EDM storage vessel might introduce
considerable dead time and would in addition make the high-sensitivity part of the apparatus
unduly complicated. With the multichamber design, one is free to make the purification system
arbitrarily slow and complicated; the only requirement is that on the order of 501 of ultrapure “He
is ready at the end of every approximately 1000 s measurement interval. It is clear that this would
represent a considerable engineering feat, but it does not seem so daunting if we consider the effort
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to build a single detector at CERN or Fermilab, and balance the cost with the expected increase in
sensitivity for the neutron EDM search and the increase in our understanding of 7 violation which
would accompany it.

Also, it might not be necessary to replace the *He after each measurement cycle; however,
determining the final *He spin orientation so that the spin direction can be properly reoriented
poses some technical difficulties.

Production of the UCN within the EDM chamber appears to be the simplest arrangement. This
requires that the EDM chamber be irradiated with the cold neutron beam. Another possibility is to
produce the UCN (in the presence of polarized *He) in a separate chamber, then transfer the UCN,
polarized 3He, and superfluid *He to the EDM chamber. There are advantages and disadvantages
for both possibilities.

After an approximately 1000s measurement interval, the superfluid is drained from the
EDM chamber and sent to the purification facility. Most of the *He will leave with the superfluid
since the diffusion rate into the cold *He gas above the superfluid is rather slow. By pumping on
the EDM chamber, the remaining 3He will be flushed out as the remaining superfluid film
evaporates.

Some questions have already been addressed by Golub [1984] in relation to operation of such an
experiment at a small reactor.

7.2. Operating temperature

The two primary considerations in choosing an operating temperature for the superfluid bath in
the EDM chamber are the UCN upscattering rate and the 3He diffusion time.

Golub et al. [1983] have shown that the UCN upscattering rate, when the number of phonons is
small (T < 0.7 K), is determined by multiexcitation processes. Two-phonon processes dominate the
upscattering and depend on temperature as 77. The UCN-upscattering lifetime is 2 x 10*>s at 0.7K;
this temperature or lower is satisfactory from UCN storage-lifetime considerations.

A typical UCN velocity is S5m/s. The correlation time associated with averaging the magnetic
field over the storage volume is given by 7, = L/v, where L is the mean free path, which for a 201
storage vessel (20cm high by 35cm diameter) is L = 4V/S = 20cm, and 7, = 0.04s. Ideally we
would like to have the mean free path for the He scattering by rotons, photons and *He on the
same order as the dimensions of the storage chamber. However as we shall see this is neither
possible nor necessary.

At temperatures where the mean free path is satisfactorily long (7 < 0.5K) and at the low 3He
concentrations of interest it is the 3He-phonon collisions which dominate the *He diffusion.
Husson and de Bruyn Ouboter [1983] (fig. 2 of that work) give the collision frequency for phonons
with 3He as 1/7,, = 4.8 x 10'%- X T, where X is the fractional *He concentration.

Then using nyn/Ton = Nye/Tue We find 1/t = 48 x 107-T7s™ 1. Now the collisions counted by
Husson and de Bruyn Oubeter [1983] are those effective in phonon transport, i.e., those collisions
which change the phonon momentum by a significant amount. For elastic collisions, which
dominate here, the momentum transfer for a phonon of momentum g, scattered through an angle
6,(Aq = 2qsin 6,/2), is equal to the momentum transfer to a *He atom with momentum p, scattered
through an angle of 6, (Ap = 2psin 8,/2), in the same collision. For every collision

p*(1 — cos@,) = ¢*(1 — cosb,), (7.1)
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therefore
{1 —cosf,> ~ {1 —cos8,><{q>*/{p>* ~ <1 ~cosf,>T/10 . (1.2)

Since the diffusion constant, D, is proportional to {1 — cosf) we can take the effective collision
rate for 3He

1/l = 48x10%- T8, (7.3)
“and the diffusion constant for 3He is
D=42303 =303 e, A3 = {03 The - (7.4)
Thus the time ¢ to diffuse a distance L is given by L? = 2Dt, and so
t = 3L*2v3ty. = 0.28L2T7 = 12077 s for L=20cm or 1sfor T=05K. (7.5)

The collision rate given in eq. (7.3) is about ten times smaller than that given by Ptukha [1961],
and calculated by Khalatnikov and Zharkov [1957]. However, given the fact that there do not
seem to be any direct measurements or reliable calculations in the relevant temperature and
concentration regions, it seems the best estimate is that based on the above considerations.
However, in the next section we will use a more conservative value of 5s.

There is an unsolved problem concerning the motion of *He in dilute solutions although its
ramifications at the low temperatures of interest here have not been investigated. Measurements of
the thermal conductivity at low 3He concentrations show the thermal conductivity approaching
a constant rather than the expected 1/X behaviour. See Ferrel [1990] for a review, also Meyer et al.
[1990] and Chiu and Lipa [1989], as well as appendix C for some additional comments.

Another important point to consider is the effects of unavoidable temperature gradients on the
motion of the 3He. In the case where the phonon density in the superfluid is high, a temperature
gradient across the bottle will result in a significant *He concentration gradient, thereby affecting
the volume average. At temperatures less than 0.7 K, such effects become rapidly insignificant.

7.3. Magnetic-field homogeneity requirements

If either the dressing or static magnetic-field gradients are too large, both the UCN and *He will
suffer significant polarization loss over the storage interval due to phase decoherence (7, relax-
ation). Since the UCN velocity is anticipated to be higher than the *He diffusion time, the latter sets
the time scale for field averaging (roughly 5s as discussed above). It should be noted that such
relaxation (7,) does not occur during the UCN accumulation period of the measurement sequence
(since the spin is not precessing during this period, the phase decoherence time is not important).
Thus only spin flip (7} ) relaxation, which should be very long when the gradients are such that T, is
long, occurs during this period. A reasonable value of 7, is 10000s; the *He polarization would
decrease by 10% over the measurement period, so the average is decreased by 5%, which should be
acceptable. :

Consider the case where the static magnetic field varies linearly over the storage vessel, with total
change 6B. The rms deviation of the static field is then B,,,, = 8B/3. Happer [1970] has shown that
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the relaxation rate is given by
T'2—1 = %tc('y’Brms)z ’ ?’ = vJO(xc) ’ (76)

where 7' has units rad s~ ! (mG) . With the values listed above, we find 8B ~ 1 pG which is about
a factor of 10 smaller than in the Hg comagnetometer experiment where the storage vessel is of
comparable dimension. Achieving the required homogeneity seems technically feasible.

For the dressing field, the requirements are slightly different. A gradient in the oscillating field
gives a gradient in the Larmor frequency through the variation in the dressing parameter,

w = y'By = yBo Jo(x.), dw = yBo Jy(x.)dx . (7.7)
Since the frequency of the dressing field is well-defined and x = yB,;/w, ~ x. =~ 1, we have
6x = ')’SBrf/wrf = 8Brf/Brf ’ 8('0 = yBOJl(xc)SBrf/Brf . (78)

Thus, T, is a result of the relative variation in B, as opposed to the static field where it is the
absolute variation. It is apparent that the dressing field-gradient relaxation rate depends on the
static field magnitude; this implies working with the smallest possible applied static field. If we take
B, = 2mG, and J,(x.) & 0.5, to achieve T, = 10000s requires 3B,;/B,; < 1 x 10~ 3. This is not too
restrictive, however, the use of large-size conductive components in the EDM storage vessel or its
environment will have to be avoided. Metal alloys become essentially insulators at low temperature
so the electrodes, feedthroughs, and other components could be made from suitably chosen alloys
(poor conductors can be used for the electrodes and high voltage supply lead since essentially no
current flows). In addition, thin conductive films, if the frequency, w,; is not too high, can be used as
heat shields, electrode coatings, etc., without disturbing the rf field. Larger conductive parts might
be allowed if careful attention is paid to symmetry and placement.

7.4. High-voltage considerations

The insulating properties of liquid helium have been well studied, both for alternating electric
fields (50 Hz) and dc. Fallou et al. [1969] have measured the dielectric strength of liquid He from
42K to 1.5K, at pressures up to 10 bar, and gap separations ranging from 0.1 to 10 mm, in uniform
ac fields. They also measured the dielectric strength for non-uniform fields (point to plane) for both
dc and ac. No significant changes as a function of pressure and temperature were found, although
the breakdown voltage for a negative point was significantly lower than for a positive point. In the
case of 50 Hz uniform fields, the dielectric strength was found to be 100kV with a 10mm gap, and
the breakdown voltage increased linearly with gap size. They also studied the effect of a radioactive
source (15mCi of °2Ir) placed in one of the electrodes which produced electrons through the
Compton effect. The breakdown voltage was not lowered by this, however, the deviation between
measurements was substantially reduced. The results of this and subsequent work show, for
uniform fields, a dielectric strength of 30kV/mm with a 1 mm gap [Fallou et al. 1969; 1970].

Gerhold [1972] found a dielectric strength of 40kV/mm approximately constant for gaps
varying from 0.1 to 1 mm. In these studies, it was found that contamination of the liquid He by oil
or oil vapor made it useless as an insulator. Whether this is a surface or a volume effect remains to
be studied. Such effects, if due to surface contamination, might restrict the types of wavelength
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shifter used to detect the ultraviolet scintillations (see next section). However, it was found that
contamination of the liquid He by frozen air particles did not alter the breakdown strength.

A further point to consider is that all of these measurements were performed between “free
electrodes” —there was no insulating cylindrical tube separating the electrodes as is used for the
EDM storage chamber. The effects of the presence of such dielectrics must be studied, as must the
possible existence of a “gap effect”, i.e., a decrease in breakdown field with increased gap separation.

A reasonable voltage in view of generation and conduction to the EDM chamber is about 1 MV,
which gives a factor of 5 increase in the electric field over the proposed Hg comagnetometer
experiment, and a factor of 4 increase over the fields used at ILL and PNPI which led to the
published results. A field order of 1 MV over 20 cm (5 kV/mm) is well below the observed dielectric
strength of liquid He of 30-40kV/mm.

It is interesting to note that for a fixed voltage, the EDM sensitivity scales as ﬁ where h is the
electrode separation (with fixed storage-chamber radius). This is because the final EDM sensitivity
scales as

o(dy) oc 1/E\/V o< 1/E/h < \/h, (7.9)

which implies that h — 0 gives maximum sensitivity. However, the minimum # is determined by the
dielectric strength. A safety factor of 6 as specified above is reasonable.

7.5. Scintillation detection

The scintillations produced by energetic particles in liquid helium was first studied by Thorndike
and Shlaer [1959] and by Fleishman, Winbinder and Wu [1959]. Simmons and Perkins [1961]
constructed a liquid He scintillation counter—polarimeter and studied a number of properties of the
system. Their system employed a wavelength shifter (p, p’-diphenylstilbene deposited on the inside
of the dewar) to convert the short-wavelength uv scintillation light to visible. They concluded that
the light output, for a particles from a 23°Pu source, was comparable to a CsI(TI) scintillator
crystal. In addition, they show that there is little self-absorption by the liquid He of the scintillation
light, and that the time structure of the pulses is similar to those of plastic scintillator (10s of ns rise
and fall time). They also demonstrated that the scintillation light wavelength is less than 1600 A.

Subsequent studies showed that the wavelength of the scintillation light is centered at about
800 A, with a full width of about 200 A [Stockton et al. 1970; Surko et al. 1970; Surko et al. 1969].
The spectral properties indicated that the light is generated by He, molecules. It was also observed
that colloidal N, impurities decreased the uv light output.

The scintillation light from liquid He also has an infrared component [ Dennis et al. 1969]. (In the
presence of colloidal oxygen, visible light is produced [Jortner et al. 1964].) However, the intensity
in these cases is much less than the uv scintillation at 800 A.

Roberts and Hereford studied the effects of temperature and electric field on the uv scintillations
produced by 2!°Po « particles [Roberts and Hereford 1973; Hereford and Moss 1966]. They found
that the total intensity decreased with temperature and electric field for temperatures greater than
0.8K, but the total intensity increased with applied electric fields below this temperature. The
effects of fields up to 13kV/cm were studied. In these experiments, an organic dye POPOP was
used as a wavelength shifter. :

For our proposed neutron EDM experiment, it seems that detection of the uv scintillation via
a wavelength shifter is the most promising scheme. A very small concentration of POPOP in
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a deuterated carrier might be satisfactory. Deuterated polystyrene (DPS) as a wall coating material
has already been shown to have excellent UCN storage properties and good vacuum high-voltage
characteristics [ Lamoreaux 1988]. The low-temperature and high-voltage properties of this mater-
ial must be studied. Another possibility is to have frozen oxygen on the walls which is a good UCN
storage material and might be a satisfactory wavelength shifter [Jortner et al. 1964].

The expected scintillation pulse width [Thorndike and Shlaer 1959] is less than 0.05 ps while the
expected counting rate is 3 x 10*cm® x 10*cm ~3/1000s = 6 x 10°Hz. Thus the scintillations
should be well resolved. The questions of background scintiliations due to y rays from the closely
located reactor core and P rays from unavoidable neutron activation products in and around the
storage vessel remain to be studied. Efficient collection of the scintillation light is also a difficult
engineering problem, particularly if pulse-height discrimination is required to reject y radiation
effects.

7.6. Sources of cold neutrons

As discussed in section 3.2, we require a UCN production rate of 60/cm*s which is about 30
times the rate obtained so far in a superthermal He source located at the end of a neutron guide.
The required rate could be obtained at the ILL if the production vessel were located roughly 3m
from the cold source, with an unobstructed solid angle. It is unlikely that such an opening could be
provided.

Golub [1984] has investigated the possibility of UCN production at small TRIGA-class reactors
which typically have thermal power of 250kW. With a liquid-nitrogen cooled moderator and
a 500s vessel lifetime, it is reasonable to expect a UCN density of 300cm ™3, With a liquid-
deuterium moderator, this might be increased by a factor of 10 which leads to a density only
a factor of 7 lower than the design goal of 2 x 10* UCN/cm?. The issues of gamma background and
heating at such a source are addressed in Golub.[1984] and Golub and Boning [1981].

An existing source of cold neutrons with a flux over a large area is the Vertical Channel
Universal Cold Source installed at the VVR-M Reactor of the Petersburg Nuclear Physics
Institute, Gatchina, Russia [Altarev et al. 1986]. The liquid D,~H, moderated source produces
a Maxwell distribution with a temperature of 16.5K, and a total integrated flux of 3 x 10!%n/s, over
an area 120 x 40mm?, giving & = 6.3 x 108cm ™25~ L. Using eqgs. (3.38) and (3.39) of Golub et al.
[1991], we find a production rate

P = 14®(E*/T*)exp(—E*/T)x 10" "UCNem ™ 3s™ ! = 19cm™3s7 1, (7.10)

where E* = 11K, T = 16.5K and the numerical factor depends on the maximum UCN energy and
hence on the wall material. However, the cold neutrons from this source are 90% polarized; the
UCN produced by downscattering should maintain this polarization (there are no significant
magnetic effects in the n—*He interaction). Thus, this is comparable to a production rate of
3. 7UCNcm ™ 3s7 %, or a factor of 10 below that required. Also, the effective volume must be
reduced by about a factor of 40 because of the reduced beam size over that anticipated earlier (from
35cm diameter by 20cm high to 12 cm diameter by 4 cm high).

However, the ultimate sensitivity should be about a factor of ﬁ higher due to an increased
average UCN polarization. This represents a loss in sensitivity by a factor (10 x 40/2)'/? = 15.
However, if the applied voltage is kept at 1 MV, the overall sensitivity loss is only a factor of 3.6,
although the electric field would be 25k V/mm —this is dangerously close to the breakdown field
strength of liquid He and of possible materials such as SiO, which would be used as the insulating
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cylinder. Also, the effect of such large fields on the properties of the scintillations is not known. In
any case, this source would be ideal for an initial study of this complex system, and the rather small
storage volume is an attractive simplification from a number of standpoints (magnetic gradients,
quantity of liquid He required, efficient detection of scintillation light); even with the reduced
volume and reduced flux, this source could be the basis for an experiment which would lead to
a factor of 100 to 1000 (depending on attainable electric-field strength) improvement in the limit of
the neutron EDM.

8. Conclusion

We have outlined an experimental technique to search for the neutron electric-dipole moment
which offers the possibility of a 2000-fold improvement over existing experimental limits. Basically,
the idea is to produce ultracold neutrons by downscattering 8.9 A neutrons in superfluid He which
is doped with a low concentration of polarized 3He; the *He serves as a UCN polarizer, analyzer
and magnetometer. The effects of static magnetic fields are eliminated by use of a dressed
magnetic-moment technique. The increase in sensitivity is due to a factor of S increase in
electric-field strength, a factor of 5 increase in UCN storage time, and a factor of 10* increase in
UCN density.

Such an improved limit is quite exciting in that this level is required to test whether the observed
CP violation in K, decay can account for the baryon asymmetry in the universe. In addition,
a factor of 10 to 100 increase in sensitivity over the current experimental limit will place rather strict
bounds on the parameters of supersymmetric, multi-Higgs, and left-right symmetric models of CP
violation. These models can readily accommodate a nonzero EDM between the present experi-
mental limit and that anticipated for our proposed new technique. However, a failure to find
a neutron EDM in this range will bring into question the veracity of these models [Weinberg 1992;
He et al. 1989; Ellis 1989; Barr and Marciano 1989; Barr 1993].

There are some difficult technical questions to be answered in the development of an apparatus
to exploit this technique, and we will begin with an experimental study of the diffusion of 3He as
described in appendix C. A more detailed discussion of the technical questions is forthcoming.
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Appendix A. Mathematical operations on the Pauli matrices

Any 2 x 2 matrix can be written (taking out a constant as necessary) as
[M]=[1]+b[a:], (A.1)

where o; is some component of a. Note (0;)> = [1].
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By use of the binomial theorem we can write

IMT =1+ (’1') blai] + (g) b [0 + ('3‘) blod + (Z) bod* + -, (A2

M =1+ (';) bloi] + (;) b? + (;’) b [o:] + (Z) b*+ o (A.3)

To sum the series we use the binomial theorem again to write

A+xr=1+ (';) X+ (;) X2 + (g) X3 + (Z) x*, (A.4)

so that

or

%[(1 +x)+(1—-x)]=1 +(n)x2 + (Z)x4+ -

2

A+ —(1— ] = ('1’) X+ (g) X34 o (A.5)
Thus

M]"=3[A + b+ (1 — b1+ [a:J3[(1 + B)"— (1 — b)"] . (A.6)

In our case b ~ t = T/2n so we can use lim,_ (1 + a/n)* =e*.

Appendix B. Quantum versus classical bebaviour in the *He-UCN system

If we consider a system of *He and UCN spins precessing in a constant magnetic field taken
along the z direction, the Hamiltonian written in the frame rotating with the 3He precession
frequency has the same form as (5.1). In the absence of a magnetic field (w, — 0) the eigenfunctions
of the Hamiltonian are the eigenfunctions of ¢, - 3. Assuming that the number of *He atoms in the
system is much larger than the number of UCN we can take &, as a classical field.

Taking a5 along the x axis, the eigenfunctions of the Hamiltonian are | + ), with eigenvalues
E. giving two decaying eigenstates with decay times 73 !:

Ey = +AP; — 3i(1/t0 FPs/the) 1/t = (1/70 ¥P3/tue) - (B.1)

Just as in the K,—K, system, if we start in an arbitrary superposition of the two eigenstates the
system evolves into the long-lived state ({s,) parallel to ;). Because of the difference in the real
parts of the eigenvalues there will be oscillations during the evolution. After the long-lived state has
been reached, the system can be restored to a superposition of the two eigenstates by switching a
to a different direction, and the evolution towards the long-lived state will begin again.
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Note that this is quite different than the behaviour of a system of classical spins which would
decay with a single rate determined by the angle between the two spin species. What we have is
a kind of Stern—Gerlach experiment on spatial quantization with the spin-dependent absorption
serving as a state selector. However in the presence of a rapidly modulated external field as
analyzed in section 5.2 we find exactly the classical behaviour. Equation (5.17) shows that if the
system begins in an eigenstate it will decay with a single decay constant given by the average angle
between the spins. Thus the rapid modulation produces a classical type decay behaviour. In the
Stern—Gerlach experiment if we rapidly modulated the spin direction while the particles were in the
high-gradient field region we would expect to see a deflection in the detector plane determined by
the average of the spin direction in the gradient region. The situation can be understood on the
basis of the “secular approximation” [Happer 1972; Barrat and Cohen-Tannoudji 1961].

In the case of a UCN interacting with the 3He classical field, the mutual interaction
Hamiltonian is

H=Cos;:06,+ 0, (B.2)

(Cis a complex constant and w, is reversed with a frequency w,, = 27/7) which, when the UCN spin
direction (in the x—y plane, as described in section 5.2) is modulated at w,,, can be separated
into a slowly varying average term and a rapidly oscillating (at the modulation frequency
and harmonics) term. In this case, the time evolution of a component of the density matrix is
described by

p= (A {0,°63> + ) B, exp(ikwmt)> P, (B.3)
k

where the average values of ¢, and g5 are slowly varying (<€ w,,), and |4| ~ | B| € w,, and the B,
depend linearly on 6,63 < 1. We assume that the 3He spin represents a fixed classical field, and
assume that the B, and A can be taken as constants. Then to first order in B/w,y,.

p(t) ~ e + B(sin wnt)/wy, , ‘ (B.4)

and we see the contribution from the oscillating terms suppressed.

The use of this formalism in the case of the Hamiltonian eq. (5.1) represents an interesting
application of the secular approximation. In this case we have to work in the reference frame
rotating at the instantaneous neutron Lamor frequency, so that the periodic excitation (the
oscillating *He spin) satisfies the conditions for the application of the secular approximation as we
discussed in section 5.3.

Appendix C. *He distribution in dilute *He—*He solutions: a new application of neutron beams

The *He in the UCN storage chamber will eventually become depolarized through T, relaxation
processes which depend on inhomogeneities in the magnetic field. Thus, it will be necessary to
periodically flush out the polarized *He and replace it with a new batch of freshly polarized 3He.
We intend to do this using the heat-flush technique [McClintock 1978; Hendry and McClin-
tock 1987] which we have applied to purify the “He used in our previous work [Golub et al. 1983;
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Kilvington et al. 1987]. In addition it may be necessary to use heat currents to insure an adequate
motion of the *He so that the *He will see the same average value of the magnetic field as the UCN.
For these reasons it will be necessary to study the motion and distribution of *He in very dilute
solutions in the appropriate temperature range. This can be done using a new technique which we
now describe and which, as we explain below, can have some interesting applications.

With a capture flux of 10° ncm 25! (easily obtainable at cold beams at the ILL) a 1 cm? beam
will produce 10! X capturess™ ! cm ™!, where X is the *He concentration. Thus if the background
is low enough and if we can discriminate againt y-rays using the pulse height of the scintillations,
we can detect extremely low *He concentrations and gradients in very dilute solutions, by scanning
the neutron beam across the experimental cell.

This can have some interesting applications. For example, a significant deviation from the
expected 1/X dependence of the thermal conductivity for X < 10~° has been experimentally
observed. Two different models which have been proposed to explain this effect begin to differ
markedly at X < 10”7 [Ferrel 1990]. Present measurements extend to X ~ 10~ 7. Measurements
of the 3He gradients by the neutron-beam scintillation technique are expected to yield results at
much lower concentrations than existing measurements and thus would help to distinguish
between the two models.
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